
19 A comparison of some finite element schemes
for the incompressible Navier–Stokes equations
By K. Valen-Sendstad, A. Logg, K.-A. Mardal, H. Narayanan and M. Mortensen

Numerical algorithms for the computation of fluid flow have been an active area of research for
several decades and still remains an active area of research. As a result, there exists a large literature on
discretization schemes for the incompressible Navier–Stokes equations, and it can be hard to judge which
method works best for any particular problem. Furthermore, since the development of any particular
discretization scheme is often a long process and tied to a specific implementation, comparisons of different
methods are seldom made.

FEniCS is a flexible platform for the implementation of different kinds of schemes based on finite
element methods. To illustrate the simplicity by which different schemes can be implemented in FEniCS,
we have implemented a test consisting of six different schemes. All schemes have been tested on six
different test problems to compare the schemes in terms of their accuracy and efficiency. The schemes we
have implemented are Chorin’s projection scheme by Chorin [1968] and Temam [1969], the incremental
pressure correction scheme (IPCS) by Goda [1979], the consistent splitting scheme (CSS) by Guermond et al.
[2006], a least-squares stabilized Galerkin scheme (G2) by Hoffman and Johnson [2007], and a saddle-point
solver based on a Richardson iteration on the pressure Schur complement (GRPC) as described in Turek
[1996].

All solvers and test problems have been implemented in Python (with a few C++ extensions) using
DOLFIN. The source code for all solvers and test problems is available online1 and can be used to reproduce
all results shown in this chapter.

19.1 Preliminaries

We consider the incompressible Navier–Stokes equations with unit fluid density written in the form

u̇ +∇u u−∇ · σ = f , (19.1)

∇ · u = 0, (19.2)

where σ is the Cauchy stress tensor which for a Newtonian fluid is defined as

σ(u, p) = 2νε(u)− pI. (19.3)

Here, u is the unknown velocity vector, p is the unknown pressure, ν is the (kinematic) viscosity, f is the
body force per unit volume, and ε(u) is the symmetric gradient:

ε(u) =
1
2
(∇u +∇u>). (19.4)

The above quantities σ and ε may be defined as follows in DOLFIN/UFL:
1http://launchpad.net/nsbench/

http://launchpad.net/nsbench/

288 automated scientific computing

Python code
def epsilon(u):

return 0.5*(grad(u) + grad(u).T)

Python code
def sigma(u, p, nu):

return 2*nu*epsilon(u) - p*Identity(u.cell().d)

In all discretization schemes below, Vh and Qh refer to the discrete finite element spaces used to
discretize the velocity u and pressure p, respectively. For all schemes except the G2 scheme, Vh is the space
of vector-valued continuous piecewise quadratic polynomials, and Qh is the space of scalar continuous
piecewise linear polynomials (Taylor–Hood elements). For the G2 scheme, continuous piecewise linears
are used for both the velocity and the pressure. We will further use h to denote the local mesh size,
kn = tn − tn−1 to denote the size of the local time step, and Dn

t uh to denote the discretized form of the
time derivative (un

h − un−1
h)/kn. For all schemes, except the fully implicit schemes G2 and GRPC described

below, the convective term is treated explicitly.

19.2 Implementation

We have implemented the solvers and test problems as two class-hierarchies in Python, where the base
classes are SolverBase and ProblemBase, respectively. The solvers, derived from SolverBase implement
the scheme, that is, they define the finite element spaces, assemble and solve linear systems, and perform
time-stepping. Code from several solvers will be shown throughout this chapter. The problems, derived
from the ProblemBase class, define the mesh, initial and boundary conditions, and other parameters.

A main script ns allows a user to solve a given problem with a given solver. All available problems and
solvers may be listed by typing

Bash code
$ ns list

which results in the following output:

Bash code
Usage: ns problem solver

Available problems:

drivencavity
channel
taylorgreen
cylinder
beltrami
aneurysm

Available solvers:

chorin
css1
css2
ipcs
g2
grpc

The ns script accepts a number of optional parameters to enable refinement in space and time, storing
the solution in VTK or DOLFIN XML format, computing stresses, or plotting the solution directly to screen.
As an example, to solve the lid-driven cavity test problem using Chorin’s method and plot the solution,
one may issue the following command:

a comparison of some finite element schemes for the incompressible navier–stokes

equations 289

Scheme 1: Chorin’s projection method

1. Compute a tentative velocity uFh by solving

〈Dn
t uFh , v〉+ 〈∇un−1

h un−1
h , v〉+ 〈ν∇uFh ,∇v〉 = 〈 f n, v〉 ∀ v ∈ Vh, (19.7)

including any boundary conditions for the velocity.

2. Compute the corrected pressure pn
h by solving

〈∇pn
h ,∇q〉 = −〈∇ · uFh , q〉/kn ∀ q ∈ Qh, (19.8)

including any boundary conditions for the pressure.

3. Compute the corrected velocity un
h by solving

〈un
h , v〉 = 〈uFh , v〉 − kn〈∇pn

h , v〉 ∀ v ∈ Vh, (19.9)

including any boundary conditions for the velocity.

Bash code
$ ns drivencavity chorin plot_solution=True

Another script named bench allows a user to iterate over all solvers for a given problem, over all problems
for a given solver, or over all problems and all solvers. As an example, the following command may be
used to solve the channel test problem with all solvers on a mesh refined twice:

Bash code
$ bench channel refinement_level=2

19.3 Solvers

In this section, we present an overview of the six different schemes that have been tested.

Chorin’s projection method

This scheme, often referred to as a non-incremental pressure correction scheme was first proposed by
Chorin [1968] and Temam [1969]. For simplicity, we will here refer to this scheme as Chorin. To solve the
system of equations (19.1)–(19.2), the idea is to first compute a tentative velocity by neglecting the pressure
in the momentum equation and then projecting the velocity onto the space of divergence free vector fields.
The projection step is a Darcy problem for un

h and pn
h :

un
h − uFh

kn
+∇pn

h = 0, (19.5)

∇ · un
h = 0, (19.6)

which is in fact reducible to a Poisson problem −∆pn
h = −∇ · uFh /kn for the corrected pressure pn

h . This is
summarized in Scheme 1 and the implementation is shown in Figure 19.1. We note that since the velocity
correction step is implemented as the solution of a linear system (involving a mass matrix that has not been
lumped), the discrete incompressibility constraint is not satisfied exactly. On the other hand, the Dirichlet
boundary conditions for the velocity are applied strongly as part of the velocity correction step and are
thus satisfied exactly (at the nodal points).

290 automated scientific computing

Python code
Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Poisson problem for the pressure
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(us)*q*dx

Velocity update
a3 = inner(u, v)*dx
L3 = inner(us , v)*dx - k*inner(grad(p1), v)*dx

Figure 19.1: Implementation of varia-
tional forms for the Chorin solver.

Scheme 2: Incremental pressure correction (IPCS)

1. Compute the tentative velocity uFh by solving

〈Dn
t uFh , v〉+ 〈∇un−1

h un−1
h , v〉+ 〈σ(un− 1

2
h , pn−1

h), ε(v)〉+ 〈pn−1
h n, v〉∂Ω − 〈ν(∇un− 1

2
h)>n, v〉∂Ω = 〈 f n, v〉

(19.10)

for all v ∈ Vh, including any boundary conditions for the velocity. Here, un− 1
2

h = (uFh + un−1
h)/2.

2. Compute the corrected pressure pn
h by solving

〈∇pn
h ,∇q〉 = 〈∇pn−1

h ,∇q〉 − 〈∇ · uFh , q〉/kn, (19.11)

including any boundary conditions for the pressure.

3. Compute the corrected velocity un
h by solving

〈un
h , v〉 = 〈uFh , v〉 − kn〈∇(pn

h − pn−1
h), v〉 ∀ v ∈ Vh, (19.12)

including any boundary conditions for the velocity.

Incremental pressure correction scheme (IPCS)

An improvement of the non-incremental pressure correction scheme is possible if the previous value for
the pressure is used to compute the tentative velocity. This idea was first introduced by Goda [1979]. The
IPCS scheme is summarized in Scheme 2 and the implementation is shown in Figure 19.2. The IPCS
scheme as implemented here also differs from the Chorin scheme in that the viscous term is evaluated at
(tn−1 + tn)/2 and a stress formulation is used in place of the Laplacian formulation used for the Chorin
scheme. Note the importance of the term 〈ν(∇un−1/2

h)>n, v〉∂Ω which arises as a result of integrating the
stress term by parts. Without this term, an incorrect velocity profile is obtained at inlets and outlets where
the velocity will tend to “creep” around the corners.

Consistent splitting scheme (CSS)

The consistent splitting scheme, as described in Guermond et al. [2006], Guermond and Shen [2003], is
derived differently from the other splitting schemes and requires a more detailed description. The scheme
is based on deriving an equation for the pressure p by testing the momentum equation (19.1) against
∇q. In combination with the incompressibility constraint, an equation for the pressure results. After
solving for the pressure, the velocity is updated based solely on the momentum equation by an appropriate
approximation (extrapolation) of the pressure. The derivation of the consistent splitting scheme is as

a comparison of some finite element schemes for the incompressible navier–stokes

equations 291

follows. Multiply the momentum equation (19.1) by ∇q for q ∈ H1(Ω) and integrate over the domain Ω to
obtain 〈u̇ +∇u u− ν∆u +∇p,∇q〉 = 〈 f ,∇q〉. Since 〈u̇,∇q〉 = 〈∇ · u̇,−q〉+ 〈u̇, qn〉∂Ω, it follows by (19.2)
that

〈∇p,∇q〉 = 〈 f −∇u u + ν∆u,∇q〉, (19.13)

if we assume that u̇ = 0 on ∂Ω. Next, we use the identity ∆v ≡ ∇∇ · v−∇×∇× v together with the
incompressibility constraint (19.2) to write the diffusive term of (19.13) in rotational form:

〈∇p,∇q〉 = 〈 f −∇u u− ν∇×∇× u,∇q〉. (19.14)

This equation is the basis for the consistent splitting scheme. At this point, we may formulate the CSS
scheme as the solution of the following pair of variational problems:

〈Dn
t uh, v〉+ 〈∇un−1

h un−1
h , v〉+ 〈ν∇un

h ,∇v〉 − 〈pFh ,∇ · v〉 = 〈 f n, v〉, (19.15)

〈∇pn
h ,∇q〉 = 〈 f n −∇un−1

h un−1
h − ν∇×∇× un

h ,∇q〉, (19.16)

where Dn
t uh is an appropriate approximation of u̇h and pFh is an appropriate approximation of the

pressure. In the simplest case, one may chose pFh = pn−1
h but higher order approximations are also

possible. For example, one may take pFh to be the linear extrapolation of ph from pn−2
h and pn−1

h given by
pFh = pn−1

h + (pn−1
h − pn−2

h) = 2pn−1
h − pn−2

h . We will refer to the simplest approximation as CSS1 and to
the higher-order approximation as CSS2.

To avoid having to compute the term ∇ ×∇ × un
h in (19.16), we take the inner product of (19.15)

with ∇q and subtract the result from (19.16) to obtain

〈∇pn
h −∇pFh ,∇q〉 = 〈Dn

t uh − ν∇×∇× un
h − ν∆un

h ,∇q〉
= 〈Dn

t uh − ν∇∇ · un
h ,∇q〉,

(19.17)

where we have again used the identity ∆v ≡ ∇∇ · v−∇×∇× v. Finally, we define an auxiliary field
ψn

h = pn
h − pFh + ν∇ · un

h to write (19.17) in the form

〈∇ψn
h ,∇q〉 = 〈Dn

t uh,∇q〉. (19.18)

The CSS scheme is summarized in Scheme 3/4.
To solve for the auxiliary variable ψ, appropriate boundary conditions must be used. Since ψ is a

pressure correction and not the pressure itself, we use homogenized versions of the pressure boundary
conditions which are zero at the boundary in the case of Dirichlet boundary conditions. This can be
accomplished in DOLFIN using the function homogenize.

We remark that the derivation of the consistent splitting scheme is based on the assumption that u̇ = 0
on ∂Ω which gives 〈u̇,∇q〉 = −〈∇ · u, q〉+ 〈u̇∂Ω, qn〉 = −〈∇ · u, q〉. For non-constant Dirichlet boundary
conditions, this assumption is not valid. This issue is not addressed in Guermond and Shen [2003], but it is
easy to add the missing term as shown in Figure 19.3 where the missing term is included in the linear
form L2.

A least-squares stabilized Galerkin method (G2)

The G2 method is a stabilized finite element method using piecewise linear discretization in space and
time. For further reading we refer to Hoffman and Johnson [2007]. In each time step, the G2 solution is
defined by

〈Dn
t uh, v〉+ 〈∇un

n · w, v〉+ 〈σ(un− 1
2

h , pn
h), ε(v)〉 − 〈ν(∇un− 1

2
h)>n, v〉∂Ω + 〈 p̄n, v〉∂Ω + SDδ = 〈 f n, v〉,

〈∇pn
h ,∇q〉 = −〈∇ · un

h /δ1, q〉,
(19.23)

292 automated scientific computing

Python code
Tentative velocity step
U = 0.5*(u0 + u)
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ inner(sigma(U, p0, nu), epsilon(v))*dx \
+ inner(p0*n, v)*ds \
- beta*nu*inner(grad(U).T*n, v)*ds \
- inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Pressure correction
a2 = inner(grad(p), grad(q))*dx
L2 = inner(grad(p0), grad(q))*dx \

- (1.0/k)*div(u1)*q*dx

Velocity correction
a3 = inner(u, v)*dx
L3 = inner(u1 , v)*dx - k*inner(grad(p1 - p0), v)*dx

Figure 19.2: Implementation of varia-
tional forms for the IPCS solver. The
flag beta = 1 is set to zero in the case
when periodic boundary conditions are
used.

Scheme 3/4: Consistent splitting

1. Compute the pressure approximation (extrapolation) pFh by

pFh =

{
pn−1

h , for CSS1,
2pn−1

h − pn−2
h , for CSS2.

(19.19)

2. Compute the velocity un
h by solving

〈Dn
t uh, v〉+ 〈∇un−1

h un−1
h , v〉+ 〈σ(un− 1

2
h , pFh), ε(v)〉+ 〈 p̄n, v〉∂Ω − 〈ν(∇ūn

h)
>n, v〉∂Ω = 〈 f n, v〉, (19.20)

including any boundary conditions for the velocity. Here, un− 1
2

h = (un
h + un−1

h)/2 and p̄ is a given
boundary condition for the pressure.

3. Compute the pressure correction ψn
h by solving

〈∇ψn
h ,∇q〉 = 〈un

h − un−1
h ,∇q〉/kn − 〈un

h − un−1
h , qn〉∂Ω/kn ∀ q ∈ Qh. (19.21)

4. Compute the corrected pressure pn
h by solving

〈pn
h , q〉 = 〈pFh + ψn

h − ν∇ · un
h , q〉 ∀ q ∈ Qh, (19.22)

including any boundary conditions for the pressure.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 293

Python code
Tentative pressure
if self.order == 1:

ps = p1
else:

ps = 2*p1 - p0

Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ inner(sigma(u, ps, nu), epsilon(v))*dx \
- beta*nu*inner(grad(u).T*n, v)*ds \
+ inner(pbar*n, v)*ds \
- inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Pressure correction
a2 = inner(grad(p), grad(q))*dx
L2 = (1/k)*inner(u1 - u0 , grad(q))*dx \

- (1/k)*inner(u1 - u0 , q*n)*ds

Pressure update
a3 = p*q*dx
L3 = p1*q*dx + psi*q*dx - nu*div(u1)*q*dx

Figure 19.3: Implementation of varia-
tional forms for the CSS solver(s). The
flag beta = 1 is set to zero in the case
when periodic boundary conditions are
used.

for all (v, q) ∈ Vh ×Qh, where un− 1
2 = (un

h + un−1
h)/2 and

SDδ = 〈δ1∇un− 1
2

h un− 1
2

h ,∇v un− 1
2

h 〉+ 〈δ2∇ · un− 1
2

h ,∇ · v〉. (19.24)

The G2 equations may be obtained by testing the incompressible Navier–Stokes equations against modified
test functions v→ v + δ1(∇v · ūn +∇q) and q→ q + δ2∇ · v and dropping a number of terms, including
all stabilizing terms involving the time derivative Dn

t uh. The stabilization parameters are set to δ1 =
κ1
2 (k

−2
n + |un−1|2h−2

n)−
1
2 and δ2 = κ2hn in the convection dominated case, that is, if ν < uh. In the diffusion

dominated case, the parameters are set to δ1 = κ1h2
n and δ2 = κ2h2

n. The constants κ1 and κ2 are here set to
κ1 = 4 and κ2 = 2.

The discrete system of equations is solved by a direct fixed-point iteration between the velocity and
pressure equations obtained by setting the test functions q = 0 and v = 0 respectively. Note that as a result
of the stabilization, one obtains a Poisson equation for the pressure involving the stabilization parameter δ1.
The G2 scheme is summarized in Scheme 5 and the implementation is shown in Figure 19.4.

A saddle-point solver for a pure Galerkin discretization (GRPC)

Finally, we test a scheme based on a pure space-time Galerkin finite element discretization of the in-
compressible Navier–Stokes equations and iterative solution of the resulting saddle-point system. The
saddle-point system is obtained by testing the momentum equation (19.1) against a test function v ∈ Vh

and the continuity equation (19.2) against a test function q ∈ Qh and integrating over Ω× [tn−1, tn]. This
corresponds to a space-time discretization using continuous piecewise quadratic and linear polynomials
in space (for Vh and Qh respectively), and continuous piecewise linear polynomials in time (with discon-
tinuous piecewise constant test functions in time). Integrating the stress term by parts, one obtains the
following variational problem: find (un

h , pn
h) in Vh ×Qh such that

1
kn
〈un

h − un−1
h , v〉+ 〈∇un− 1

2
h un− 1

2
h , v〉+ 〈σ(un− 1

2
h , pn

h), ε(v)〉 − 〈ν(∇un− 1
2

h)> · n, v〉∂Ω + 〈 p̄n, v〉 = 〈 f , v〉,(19.27)

〈∇ · un− 1
2

h , q〉 = 0,(19.28)

294 automated scientific computing

Scheme 5: G2

1. Compute stabilization parameters δ1 and δ2.

2. Repeat until convergence:

(a) Update the pressure pn
h by solving

〈∇pn
h ,∇q〉 = −〈∇ · un

h /δ1, q〉 ∀ q ∈ Qh, (19.25)

including any boundary conditions for the pressure.

(b) Update the velocity un
h by solving

〈Dn
t uh, v〉+ 〈∇un

n · w, v〉+ 〈σ(un− 1
2

h , pn
h), ε(v)〉 − 〈ν(∇un− 1

2
h)>n, v〉∂Ω + 〈 p̄n, v〉∂Ω

+〈δ1∇un− 1
2

h · w,∇v · w〉+ 〈δ2∇ · un− 1
2

h ,∇ · v〉 = 〈 f n, v〉
(19.26)

for all v ∈ Vh, including any boundary conditions for the velocity. Here, un− 1
2

h = (un
h + un−1

h)/2, p̄ is
a given boundary condition for the pressure, and w is an approximation of the velocity un

h from the
previous iteration.

(c) Compute a piecewise constant approximation w of un
h .

(d) Compute the residuals of the momentum and continuity equations and check for convergence.

Python code
Velocity system
U = 0.5*(u0 + u)
P = p1
Fv = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(U)*W, v)*dx \
+ inner(sigma(U, P, nu), epsilon(v))*dx \
- beta*nu*inner(grad(U).T*n, v)*ds \
+ inner(pbar*n, v)*ds \
- inner(f, v)*dx \
+ d1*inner(grad(U)*W, grad(v)*W)*dx \
+ d2*div(U)*div(v)*dx

av = lhs(Fv)
Lv = rhs(Fv)

Pressure system
ap = inner(grad(p), grad(q))*dx
Lp = -(1/d1)*div(u1)*q*dx

Projection of velocity
aw = inner(w, z)*dx
Lw = inner(u1 , z)*dx

Figure 19.4: Implementation of varia-
tional forms for the G2 solver.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 295

Scheme 6: GRPC

1. Repeat until convergence:

(a) Assemble the residual vector RU of the momentum equation.

(b) Update the velocity vector U according to

U := U − K−1RU . (19.30)

(c) Assemble the residual vector RP of the continuity equation.

(d) Update the pressure vector P according to

P := P− τ1L−1
1 RP − τ2L−1

2 RP. (19.31)

where un− 1
2

h = (un
h + un−1

h)/2 and p̄ is a given boundary condition for the pressure. The resulting algebraic
system of equations takes the form

[
M + ∆tN(U) ∆tB

∆tBT 0

] [
U
P

]
=

[
b
0

]
, (19.29)

where U and P are the vectors of degrees of freedom for un
h and pn

h respectively, M is the mass matrix, N is
a convection–diffusion operator (depending on Un), B is the discrete gradient, and b is a vector depending
on the solution on the previous time step, body forces and boundary conditions. Notice that we have
multiplied the incompressibility constraint by ∆t to obtain symmetry in case N is symmetric.

To solve this system of equations, we employ an algebraic splitting technique sometimes referred to as
generalized Richardson iteration on the pressure Schur complement (GRPC) [Turek, 1999]. The convergence
of this method depends critically on the efficiency of two preconditioners, K and L. The preconditioner
K should approximate M + ∆tN, while L which should approximate the pressure Schur complement
BT(M + ∆tN)−1B. It is well known that if an explicit scheme is used for convection, then order-optimal
solution algorithms for both M + ∆tN and BT(M + ∆tN)−1B are readily available [Cahouet and Chabard,
1988, Turek, 1999, Mardal and Winther, 2004, 2011]. In fact L−1 ≈ ∆tM−1

Q + A−1
Q , where MQ and AQ are

the mass and stiffness matrices associated with the pressure discretization. Hence, we let L1 = 1
∆t MQ and

L2 = AQ and approximate L−1 by τ1L−1
1 + τ2L−1

2 . For simplicity, we here let τ1 = τ2 = 2. For a further
discussion on these preconditioners, we refer to the Chapter 30. In the implementation, we have chosen
to exclude the convective term in the preconditioners K and L to avoid reassembly. The GRPC scheme is
summarized in Scheme 6 and the implementation is shown in Figure 19.5.

Python code
Velocity and pressure residuals
U = 0.5*(u0 + u1)
P = p01
Ru = inner(u1 - u0, v)*dx \

+ k*inner(grad(U)*U, v)*dx \
+ k*inner(sigma(U, P, nu), epsilon(v))*dx \
- beta*k*nu*inner(grad(U).T*n, v)*ds \
+ k*inner(pbar*n, v)*ds \
- k*inner(f, v)*dx

Rp = k*div(U)*q*dx

Figure 19.5: Implementation of varia-
tional forms for the GRPC solver.

296 automated scientific computing

Problems Functionals / norms
Driven cavity, 2D Minimum of stream function at t = 2.5
Channel flow, 2D Velocity ux at (x, y) = (1, 0.5) at t = 0.5
Flow past a cylinder, 2D Pressure difference across cylinder at t = 8
Taylor–Green vortex, 2D Kinetic energy at t = 0.5
Beltrami flow, 3D Relative L2 error in velocity at t = 0.5
Idealized aneurysm, 3D Velocity ux at (x, y, z) = (0.025,−0.006, 0) at t = 0.05

Table 19.1: Summary of test problems.

19.4 Test problems and results

To test the accuracy and efficiency of Schemes 1–6, we apply the schemes to a set of test problems. For
each test problem, we make an ad hoc choice for how to measure the accuracy; we either measure the
error in a certain functional of interest or a norm of the global error. The choice of test problems and
functionals clearly affects the conclusions one may draw regarding the schemes. However, together the
six test problems should give a good indication of the accuracy and efficiency of the tested schemes. We
emphasize that all schemes have been implemented in the same framework and with minor differences in
their implementation to make a fair comparison. All test problems represent laminar flow for small to
moderate size Reynolds numbers in the range 1–1000. The test problems are listed in Table 19.1.

Common parameters

For all solvers, the time step is chosen based on an approximate CFL condition k = 0.2 h/U where U is an
estimate of the maximum velocity.

Comparisons of solvers are made by plotting the CPU time / seconds and error against the number
of degrees of freedom. Since all solvers except the G2 solver use the same type of discretization (P2–P1),
this is equivalent to plotting CPU times and errors against refinement level or mesh size for those solvers.
However, since the G2 method uses a P1–P1 discretization, the graphs will change depending on whether
the x-axis is given by the number of degrees of freedom or the mesh size. In particular, the G2 method will
seem slower (but at the same time more accurate) when plotting against the number of degrees of freedom,
while seeming to be faster (but at the same time less accurate) when plotting against mesh size.

All simulations have been performed on a Linux cluster on a single node with 8 GB of memory. The test
problems have been solved several times and the recorded CPU times have been compared with previous
runs to ensure that the results are not influenced by any “noise”.

To ensure accurate solution of linear systems, the absolute and relative tolerances for the DOLFIN
(PETSc) Krylov solvers were set to 1e-25 and 1e-12 respectively. In all cases, the velocity system was
solved using GMRES with ILU preconditioning and the pressure system was solved using GMRES with an
algebraic multigrid preconditioner (Hypre). For the iterative methods G2 and GRPC, the tolerance for the
main iteration was set to a value between 1e-6 to 1e-12 with higher values in cases where the convergence
was slow (or non-existent).

Driven cavity (2D)

A classical benchmark problem for fluid flow solvers is the two-dimensional lid-driven cavity problem. We
consider a square cavity with sides of unit length and kinematic viscosity ν = 1/1000. No-slip boundary
conditions are imposed on each edge of the square, except at the upper edge where the velocity is set to
u = (1, 0). Figure 19.6 shows the implementation of these boundary conditions in DOLFIN. The initial
condition for the velocity is set to zero. The resulting flow is a vortex developing in the upper right corner
and then traveling towards the center of the square as the flow evolves.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 297

Python code
class BoundaryValue(Expression):

def eval(self , values , x):
if x[0] > DOLFIN_EPS and \

x[0] < 1.0 - DOLFIN_EPS and \
x[1] > 1.0 - DOLFIN_EPS:
values[0] = 1.0
values[1] = 0.0

else:
values[0] = 0.0
values[1] = 0.0

Figure 19.6: Implementation of veloc-
ity boundary conditions for the driven
cavity test problem.

As a functional of interest, we consider the minimum value of the stream function at final time
T = 2.5. Reference values for this functional are available in Pandit et al. [2007], where a reference value
of min ψ = −0.0585236 is reported, and in Chudanov et al. [2007], where a value of min ψ = −0.058048
is reported. These values differ already in the third decimal. To obtain a better reference value, we have
therefore computed the solution using the spectral element code Semtex [Blackburn, 2011, Blackburn and
Sherwin, 2004] with up to 80× 80 10th order elements, heavily refined in the area in the vicinity of the
minimum of the stream function. The time-stepping for computing the reference solution was handled
by a third order implicit discretization and a very short time step was used to minimize temporal errors.
The resulting reference value for the minimum of the stream function was min ψ = −0.061076605. This
value differs remarkably much from the available reference values in the literature, but seems to be correct
judging from the convergence plots for the different solvers in Figure 19.8.

Computing the stream function. The stream function is defined as

ux =
∂ψ

∂y
, uy =

∂ψ

∂x
, (19.32)

and can be computed by solving the Poisson problem

−∇2ψ = ω, (19.33)

where ω is the vorticity given by

ω =
∂ux

∂y
− ∂uy

∂x
. (19.34)

For a more thorough description, see White [1999] or White [1991]. Figure 19.7 shows how to compute the
stream function in DOLFIN.

Results. Figure 19.8 shows the results for the driven cavity test problem. The smallest errors are obtained
with the Chorin and GRPC schemes. The GRPC solver is also the slowest solver. We further observe a clear
difference between CSS1 and CSS2.

Pressure-driven channel flow (2D)

As a second test problem, we seek the solution of the Navier–Stokes equations in a two-dimensional
pressure-driven channel. The geometry of the channel is the unit square [0, 1]2 and the kinematic viscosity
is ν = 1/8. No-slip boundary conditions are applied to the velocity at the upper and lower walls and
Neumann boundary conditions are applied at the inlet and outlet. Dirichlet boundary conditions are
applied to the pressure at the inlet and outlet, with p = 1 at the inlet and p = 0 at the outlet. The initial
condition is u = (0, 0) for the velocity. As a functional of interest, we consider the x-component of the

298 automated scientific computing

Python code
Define variational problem
V = u.function_space ().sub(0)
psi = TrialFunction(V)
q = TestFunction(V)
a = dot(grad(psi), grad(q))*dx
L = dot(u[1].dx(0) - u[0].dx(1), q)*dx

Define boundary condition
g = Constant(0)
bc = DirichletBC(V, g, DomainBoundary ())

Compute solution
problem = VariationalProblem(a, L, bc)
psi = problem.solve()

Figure 19.7: Computing the stream func-
tion in DOLFIN.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Driven cavity

0 100000 200000 300000 400000 500000 600000
0

10000

20000

30000

40000

50000

60000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
3

10
4

10
5

10
6

Degrees of freedom

10
-5

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Figure 19.8: Results for the driven cavity
test problem.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 299

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Channel

0 100000 200000 300000 400000 500000 600000
0

5000

10000

15000

20000

25000

30000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Figure 19.9: Results for the pressure-
driven channel test problem.

velocity at (x, y) = (1, 0.5) at final time T = 0.5. By a Fourier series expansion, it is easy to show that the
exact value of the velocity at this point is given by

ux(1, 0.5, t) = 1−
∞

∑
n=1,3,...

32
π3n3 e−

π2n2t
8 (−1)(n−1)/2. (19.35)

At final time T = 0.5, this values is ux(1, 0.5, 0.5) ≈ 0.44321183655681595.

Results. Figure 19.9 shows the results for the pressure-driven channel test problem. Again, the smallest
error is obtained with the GRPC solver, closely followed by the IPCS solver. The W-shaped curve for the
G2 solver is an effect of the P1–P1 discretization which results in a vertex located at (x, y) = (1, 0.5) only
for every other refinement level.

Taylor–Green vortex (2D)

As our next test problem, we consider the Taylor–Green vortex described in Canuto et al. [2007], which is a
periodic flow with exact solution given by

u(x, y, t) =(cos(πx) sin(πy)e−2tνπ2
, cos(πy) sin(πx)e−2tνπ2

),

p(x, y, t) =− 0.25(cos(2πx) + cos(2πy))e−4tνπ2
,

(19.36)

on the domain [−1, 1]2. The kinematic viscosity is set to ν = 1/100. Periodic boundary conditions are
imposed in both the x and y directions. The implementation of these boundary conditions in DOLFIN is
shown in Figure 19.10. The initial velocity and pressure fields are shown in Figure 19.11. As a functional of
interest, we measure the kinetic energy K = 1

2‖u‖2
L2 at final time T = 0.5.

300 automated scientific computing

Python code
class PeriodicBoundaryX(SubDomain):

def inside(self , x, on_boundary):
return x[0] < (-1.0 + DOLFIN_EPS) and \

x[0] > (-1.0 - DOLFIN_EPS) and \
on_boundary

def map(self , x, y):
y[0] = x[0] - 2.0
y[1] = x[1]

class PeriodicBoundaryY(SubDomain):
def inside(self , x, on_boundary):

return x[1] < (-1.0 + DOLFIN_EPS) and \
x[1] > (-1.0 - DOLFIN_EPS) and \
on_boundary

def map(self , x, y):
y[0] = x[0]
y[1] = x[1] - 2.0

Figure 19.10: Implementation of peri-
odic boundary conditions for the Taylor–
Green vortex test problem.

Figure 19.11: An illustration of the initial
conditions for the Taylor–Green vortex
test problem. On the left is the velocity
field with vectors and on the right is the
corresponding pressure field.

Results. Figure 19.12 shows the results for the Taylor–Green test problem. The smallest error is obtained
with the IPCS solver. For this test problem, the G2 solver is overly dissipative and produces an error which
is six orders of magnitude larger than that of the IPCS solver.

Flow past a cylinder (2D)

We next consider a test problem from Turek [1996], which is a two-dimensional cylinder submerged into a
fluid and surrounded by solid walls as illustrated in Figure 19.13. The cylinder is slightly displaced from
the center of the channel and the resulting flow is a vortex street forming behind the cylinder. No-slip
boundary conditions are applied to the cylinder as well as the upper and lower walls of the channel. A zero
Dirichlet boundary condition is imposed on the pressure at the outlet. The inflow velocity is a time-varying
parabolic profile given by

u(0, y, t) = (4Umy(H − y) sin(πt/8)/H4, 0), t 6 8, (19.37)

where Um = 1.5 and H = 0.41. The kinematic viscosity is ν = 1/1000. As a functional of interest, we
consider the pressure difference between the front and back of the cylinder at final time T = 8, that is,

∆p = p(0.45, 0.2, 8)− p(0.55, 0.2, 8). (19.38)

A reference value −0.11144 for this functional was obtained using the IPCS solver on a mesh that was
approximately of twice the size (in terms of the number of cells) as the finest mesh used in the test, with a
time step of approximately half the size of the finest used time step.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 301

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Periodic

0 100000 200000 300000 400000 500000 600000
0

10000

20000

30000

40000

50000

CP
U

 t
im

e

Chorin
CSS1
IPCS
G2
CSS2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Er
ro

rs

Chorin
CSS1
IPCS
G2
CSS2

Figure 19.12: Results for the Taylor–
Green vortex test problem.

Figure 19.13: Illustration of the velocity
field for the cylinder test problem at t =
5.

302 automated scientific computing

0 10000 20000 30000 40000 50000
0

10000

20000

30000

40000

50000

60000

70000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

CSS2
CSS1
G2
GRPC
Chorin
IPCS

0 10000 20000 30000 40000 50000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Er
ro

rs

10
4

Degrees of freedom

10
-4

10
-3

10
-2

10
-1

Er
ro

rs

Figure 19.14: Results for the cylinder
test problem.

Results. Figure 19.14 shows the results for the cylinder test problem. The smallest error is obtained with
the GRPC solver closely followed by CSS2 and IPCS. It is interesting to note that for this test problem, the
CSS2 solver is also the fastest.

Beltrami flow (3D)

We next consider a problem described in Ethier and Steinmann [1994] where an exact fully three-
dimensional solution of the Navier–Stokes equations is derived. The flow is a so-called Beltrami flow,
which has the property that the velocity and vorticity vectors are aligned. The domain is a cube with
dimensions [−1, 1]3. The exact velocity is given by

u(x, y, z, t) =− a[eax sin(ay + dz) + eaz cos(ax + dy)]e−d2t,

v(x, y, z, t) =− a[eay sin(az + dx) + eax cos(ay + dz)]e−d2t,

w(x, y, z, t) =− a[eaz sin(ax + dy) + eay cos(az + dx)]e−d2t,

(19.39)

and the exact pressure is given by

p(x, y, z, t) = −a2e−2d2t
(

e2ax + e2ay + e2az
)
×

× (sin(ax + dy) cos(az + dx)ea(y+z)+

sin(ay + dz) cos(ax + dy)ea(x+z)+

sin(az + dx) cos(ay + dz)ea(x+y)) .

(19.40)

The solution is visualized in Figure 19.15. The constants a and d may be chosen arbitrarily, and have been
set to a = π/4 and d = π/2 as in Ethier and Steinmann [1994]. The kinematic viscosity is ν = 1. To

a comparison of some finite element schemes for the incompressible navier–stokes

equations 303

Figure 19.15: Solution of the Beltrami
flow test problem.

measure the error, we compute the L2 norm of the error in the velocity field at final time T = 0.5 divided
by the L2 norm of the exact solution as in Ethier and Steinmann [1994].

Results. Figure 19.16 shows the results for the Beltrami test problem. The smallest errors are obtained
with the GRPC solver, while the largest errors are obtained with the CSS1 solver.

Aneurysm (3D)

Finally, we consider an idealized geometry modeling an artery with a saccular aneurysm (see Chapter 23).
The diameter of the artery is set to 4 mm and the length is set to 50 mm. The aneurysm is of medium size
with a radius of 2.5 mm. Inserting the density and viscosity of blood and suitably scaling to dimensionless
quantities, we obtain a kinematic viscosity of size ν = 3.5/(1.025 · 103) ≈ 3.4146 · 10−6. The geometry and
flow at the final time T = 0.05 (ms) is shown in Figure 19.17. We impose no-slip boundary conditions
on the vessel walls. At the inlet, we set the velocity to u(x, y, z, t) = sin(30t) (1− (y2 + x2)/r2) where
r = 0.002 (mm). At the outlet, we enforce a zero Dirichlet boundary condition for the pressure. As a
functional of interest, we consider the x-component of the velocity at a point (x, y, z) = (0.025,−0.006, 0)
(mm) located inside the aneurysm at final time T = 0.05 (ms). A reference value −0.0355 (mm/ms) for this
functional was obtained using the IPCS solver on a fine mesh.

Results. Figure 19.18 shows the results for the aneurysm test problem. Reasonable convergence is obtained
for all solvers except the G2 solver which does not seem to converge towards the computed reference value.

19.5 Summary of results

To summarize the results for all solvers and test problems, we plot all timings and errors in a single scatter
plot. The rationale behind the plot is to get an indication of which solver(s) is most accurate and efficient.
Each data point in the plot is the result of solving one of the above test problems using one particular
solver on one particular refinement level. To be able to compare different test problems (which vary in
simulation time and size of error), the CPU time is scaled by the average CPU time for all solvers on each
refinement level and the errors are scaled similarly. We also scale CPU times and errors by the number of
degrees of freedom (total number of unknowns for both velocity and pressure). The resulting scatter plot
is shown in Figure 19.19. An ideal solver (which is both fast and accurate) should be located in the lower
left corner of this plot.

304 automated scientific computing

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Beltrami

0 200000 400000 600000 800000

0

5000

10000

15000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
3

10
4

10
5

10
6

Degrees of freedom

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Figure 19.16: Results for the Beltrami
flow test problem.

Figure 19.17: Velocity magnitude for the
aneurysm test problem sliced at the cen-
ter at final time T = 0.05 ms.

a comparison of some finite element schemes for the incompressible navier–stokes

equations 305

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Aneurysm

0 50000 100000 150000 200000 250000 300000 350000 400000
0

10000

20000

30000

40000

50000

60000

70000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
4

10
5

10
6

Degrees of freedom

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Figure 19.18: Results for the aneurysm
test problem.

-3 -2 -1 0 1
Scaled CPU time

-10

-5

0

Sc
al

ed
 e

rr
or

Solver performance

CSS2

CSS1

G2

GRPC

Chorin

IPCS

Figure 19.19: Scatter plot summarizing
the results for all test problems and
solvers (logarithmic scale).

306 automated scientific computing

As can be seen in Figure 19.19, the Chorin, CSS1 and CSS2 solvers have an average performance and
are mostly clustered around the center of mass of the scatter plot. The G2 solver is mainly located in the
upper right corner. The results for the IPCS solver are less clustered but it is the solver with most points
located in the lower left corner. The GRPC solver is mostly located in the lower right corner of the scatter
plot, indicating that it is accurate but expensive.

19.6 Discussion

Numerical boundary layers

As pointed out in Guermond et al. [2006], the fractional step solvers are usually plagued by an artificial
boundary layer, because the boundary condition ∇pn

h · n|∂Ω = 0 is enforced on the pressure. This
’unphysical’ Neumann boundary condition can create a numerical boundary layer simply because the
velocity update un

h = un−1 − ∆t∇pn
h may lead to non-zero velocities in the tangential direction on no-slip

walls (this follows since there is nothing preventing the pressure gradient from being non-zero in the
tangential direction). However, in this work the velocity is being updated through a weak form where
the no-slip boundary condition is strongly enforced. As such, the tangential velocity is set to zero and an
artificial boundary layer is not observed in our simulations using the fractional step solvers Chorin and
IPCS.

Time discretization

For the channel test problem, the convective term is zero and the discretization of the diffusive term is
of particular importance. A formally second-order accurate in time Crank–Nicolson type scheme for the
viscous term will in general improve the accuracy over the merely first-order explicit or fully implicit
schemes. This is why the GRPC, IPCS and G2 solvers perform well on this problem. The channel test
problem is the problem where G2 performs best relative to the other solvers, which could also be attributed
to the fact that both stabilization terms in the momentum equation of G2 are zero for this flow.

19.7 Conclusions

From the scatter plot in Figure 19.19, we conclude that the IPCS solver is overall the most efficient and
accurate method. Another advantage of the IPCS method is that it is easy to implement and does not
require the iterative solution of a nonlinear system in each time step. The GRPC method (straightforward
standard finite element Galerkin discretization) also obtains high accuracy, but does not deliver the same
speed. It is possible that better tuning of the iterative solution of the saddle-point system would change
this picture.

