
A continuum theory of multiphase mixtures for
modelling biological growth

Harish Narayanan

University of Michigan

October 10th, 2007 – Ann Arbor, MI



Outline

• Introduction

• A Lagrangian perspective ⇔ Chapter 2

• Some representative numerical simulations ⇔ Chapter 3

• An Eulerian perspective ⇔ Chapter 4

• Some more representative numerical simulations ⇔ Chapter 5

• Conclusions



The motivating question

• What constitutes an ideal environment for tissue growth?
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Increasing collagen concentration with age

• Growth involves an addition or depletion of mass



Some experimental observations
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Some experimental observations

Uniaxial tensile response (Calve et al.) Response under cyclic load (Calve et al.)

• What causes the tissue to behave in this manner?

• Modelling of the coupled mechanics ⇒ Stiffness of the tissue
and fluid transport ⇒ Nutrient transport ⇒ Tissue growth



Modelling approach

Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– Undergoes transport relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– Undergo transport relative to the fluid

◦ Cowin and Hegedus [1976], Epstein and Maugin [2000]

◦ Humphrey and Rajagopal [2002], Garikipati et al. [2004]

◦ Loret and Simões [2005], Ateshian [2007]
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Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– Undergoes transport relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– Undergo transport relative to the fluid

Some related literature:

◦ Cowin and Hegedus [1976], Epstein and Maugin [2000]

◦ Humphrey and Rajagopal [2002], Garikipati et al. [2004]

◦ Loret and Simões [2005], Ateshian [2007]



The governing equations—Lagrangian perspective
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ρι
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Πι – Species production rate

M ι – Species relative flux

V ι – Species velocity
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• Mass balance:
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Growth kinematics
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Solving the balance equations in practice—A first pass

• Close the equations with thermodynamically-consistent
constitutive relationships

◦ Solid: Hyperelastic material, P c = ρc
0

∂ec

∂F ec F gc−T

Helmholtz free energy derived from entropic elasticity-based
worm-like chain model

◦ Fluid: Ideal, det(F ef )−1P fF efT = h′(ρf)1

h
(
ρf

)
= 1

2κ
f

(
ρf
0ini
ρf − 1

)2
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◦ Avoid specification of qι, because

∑
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• Close the equations with thermodynamically-consistent
constitutive relationships

◦ Solid: Hyperelastic material, P c = ρc
0

∂ec

∂F ec F gc−T

Helmholtz free energy derived from entropic elasticity-based
worm-like chain model
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h
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= 1
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• Sum species momentum balances to solve system-level
balance law

◦ Reduce number of partial differential equations by one
◦ Avoid specification of qι, because

∑
ι

(ρι
0q

ι + ΠιV ι) = 0

• System-level motion determined, utilise a constitutive
relationship to determine relative fluid flux

M f = Df
(
ρf
0F T g + F T ∇X · P f − ∇X(ef − θηf )

)



Assumptions on the micromechanics

1. Upper bound model from strain homogenisation:

Ω0

Ωt

F

Solid, ‘s’
Fluid, ‘f’

Pore structure deforms with the solid phase ⇒ Fluid-filled pore spaces see the overall deformation gradient



Assumptions on the micromechanics

1. Upper bound model from strain homogenisation:

Ω0

Ωt

F

Solid, ‘s’
Fluid, ‘f’

Pore structure deforms with the solid phase ⇒ Fluid-filled pore spaces see the overall deformation gradient

2. Lower bound model from stress homogenisation:

Ω0

Ωt

F

Solid, ‘s’
Fluid, ‘f’

Fluid pressure in the current configuration is the same as hydrostatic stress of the solid, pf = 1
3 tr[σs]

3. More precise bounds exist, e.g. Idiart and Castañeda [2003]



An operator-splitting solution scheme

• Nonlinear projection methods to treat incompressibility

• Backward Euler for time-dependent mass balance

• Mixed method for stress/strain gradient-driven fluxes

• Large advective terms stabilised using SUPG

• Coupled implementation; staggered scheme

At each time step, repeat:
◦ Fixing the concentration fields, solve the
mechanics problem for displacements, u

◦ Fixing the displacement field, solve the mass
transport problem for the concentration field, ρf

until both problems converge



Constriction of a tendon immersed in a bath

N · M f

N · M f

au au

• Simulating a tendon immersed in a bath

• Constrict it radially to force fluid flow

• Biphasic model

◦ Worm-like chain model for collagen
◦ Ideal, nearly incompressible fluid

• Mobility from Han et al. [2000]



Evolution of the reference fluid concentration



Implications of the assumptions
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• Strength of coupling: C = δpf

1
3 δtr[σs]

• Upper bound: C ≈ O(κfδF :F −T
)

O(κsδF :F −T
)

= O(κf

κs ) � 1

• Lower bound: C = 1



A closer look at the convergence
Pass Strongly coupled Weakly coupled

Mechanics Residual CPU (s) Mechanics Residual CPU (s)

1 2.138 × 10−02 29.16 6.761 × 10−04 28.5

3.093 × 10−04 55.85 1.075 × 10−04 55.1

2.443 × 10−06 82.37 4.984 × 10−06 81.8

2.456 × 10−08 109.61 1.698 × 10−08 107.9

4.697 × 10−14 135.83 3.401 × 10−13 134.1

1.750 × 10−16 163.18 1.1523 × 10−17 161.1

2 5.308 × 10−06 166.79 5.971 × 10−08 192.5

4.038 × 10−10 193.36 4.285 × 10−11 218.6

1.440 × 10−14 220.45 2.673 × 10−15 246.1

4.221 × 10−17 247.04

3 5.186 × 10−06 250.62 2.194 × 10−09 277.3

3.852 × 10−10 277.44 2.196 × 10−13 304.2

1.369 × 10−14 304.16 1.096 × 10−17 331.6

4.120 × 10−17 331.47

4 5.065 × 10−06 335.16 8.160 × 10−11 363.2

3.674 × 10−10 362.24 7.923 × 10−15 390.2

1.300 × 10−14 388.79

4.021 × 10−17 416.08

5 4.948 × 10−06 419.59 3.078 × 10−12 421.4

3.503 × 10−10 446.24 3.042 × 10−16 448.6

1.236 × 10−14 473.20

3.924 × 10−17 500.85

6 4.832 × 10−06 504.65 1.179 × 10−13 479.9

3.340 × 10−10 531.28 1.291 × 10−17 507.0

1.174 × 10−14 558.17

3.829 × 10−17 585.27



Swelling of a tendon immersed in a bath

First order rate law:
Πf = −kf(ρf − ρf

ini),
Πc = −Πf

Collagen concentration evolution

Volume evolution curve
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The governing equations—Eulerian perspective

X

Ω0

ϕt

x

Ωt

X ι

Ωι
0

ϕι
t

Current quantities:
ρι – Species concentration

πι – Species production rate

mι – Species total flux

vι – Species velocity

g – Body force

qι – Interaction force

σι – Partial Cauchy stress

• The notion of a deformation gradient is unnatural for the fluid

• Mass balance:
∂ρι

∂t = πι − ∇x · mι

• Momentum balance:

ρι ∂vι

∂t = ρι (gι + qι) + ∇x · σι − (∇xvι) mι
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Returning to the dissipation inequality

Upon combining the balance of energy and the entropy inequality
at uniform, constant temperature:

∑
ι

(
ριψ̇ι − σι : grad (vι) + ριgrad (ψι) · vι

)

+
∑

ι

(
ριqι · vι + πι

(
ψι +

1
2
‖vι‖2

))
≤ 0

• A viscoelastic solid; A Newtonian fluid

• Effects of the stress state on tissue growth

• Frictional interaction forces

• Energy-dependent mass source terms



Energy-dependent mass source terms

∑
ι
πι

(
ψι + 1

2‖vι‖2
) ≤ 0, πf = 0 ⇒

For e.g., πc = −κcA, or

πc = ε κc (exp [−ε U A] − 1)

where
A =

(
ψc + 1

2‖vc‖2 − ψs − 1
2‖vs‖2

)
,

ε = sign (A), U > 0 and κc ≥ 0
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A thermodynamically-motivated collagen source

The thermodynamics indicates that the collagen source should be
positive when the solute is more energetic



Effects of the stress state on tissue growth

−F eTP c : Ḟ g ≤ 0 ⇒ Ḟ g = λ F eTP c, λ ≥ 0

i.e., Incremental changes in the growth deformation gradient align
with the partial first Piola-Kirchhoff stress

Hindlimb unloading alters ligament healing (Provenzano et al. [2003])



Solving the balance laws in practice—Reprise

• Impose the “detailed” balance of momentum instead

• Close the equations by specifying constitutive relationships for
stress and momentum transfer terms arising from dissipation
inequality: ρcqc = −ρfqf = −Dfc

(
vc − vf

)
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notion of any deformation gradient besides F

• Assume intrinsic incompressibility and impose tisue saturation:
(ρc

0/J)
ρ̃c + ρf

ρ̃f = 1



Solving the balance laws in practice—Reprise

• Impose the “detailed” balance of momentum instead

• Close the equations by specifying constitutive relationships for
stress and momentum transfer terms arising from dissipation
inequality: ρcqc = −ρfqf = −Dfc

(
vc − vf

)
• Solve fluid equations in the current configuration ⇒ No

notion of any deformation gradient besides F

• Assume intrinsic incompressibility and impose tisue saturation:
(ρc

0/J)
ρ̃c + ρf

ρ̃f = 1

• Strain energy function for the elastic portion of the response
of the solid collagen is the model of Mooney and Rivlin:

ψ̂c(Ce) =
n∑

i,j=0
Cij(I1 − 3)i(I2 − 3)j

• Fluid is ideal; Pressure serves as a Lagrange multiplier to
impose the saturation constraint



The swelling balloon



The constricted tissue



Contrasting the dynamic and quasistatic solution
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Tests using parameters for realistic soft tissue

Mechanical response of a ligament (Ma et al.)

Parameter Value (GPa)

C10 0
C01 0
C20 0.54434
C11 0
C02 0.54714
C30 1.83688
C21 1.19985
C12 10.6863
C03 38.3875

• Friction coefficient tensor fit to Swartz et al. [1999]
Dfc = D 1 = 1.037 1 MPa.s.mm−2

• Solid collagen comprises 30% of the total mass of the mixture
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Stress relaxation
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Hysteresis in the cyclic stress-strain response
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The physics of growing tumours

• Compressive solid stress along a given direction restricts the
in vitro growth of tumours along that direction
(Helmlinger et al. [1997])

• Solid comprised of an extra-cellular matrix (ECM) and tumour
cells capable of moving with respect to this matrix

• Balance of mass with a uniform source

• Isotropic (plane strain) swelling associated with this growth:

F gc
=
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Kinematic swelling along with growth



A constraining wall and soft contact mechanics



The mechanics of the cells

Total solid stress:

σc =
1
J

ρc
0

ρ̃c
0

∂ψ̂c

∂F
F T

︸ ︷︷ ︸
Passive

+ τ ρcρcell(N − ρcell) 1︸ ︷︷ ︸
Active

Homogeneous inward pull Heterogeneous inward pull

Modelling choices based on Namy et al. [2004]



Transport of the cells

Mass flux of the cells:

ρcell vcell = h ρcell grad (ρc)︸ ︷︷ ︸
Haptotactic flux

−Dcell grad
(
ρcell

)
︸ ︷︷ ︸

Cell diffusion

Non-uniform matrix concentration



Diffusion and proliferation of the cells



Proliferating cells undergoing haptotaxis



Coupling the phenomena



A growing tumour constrained by a wall



Concluding remarks

The computational framework furnishes a powerful tool that can
be tailored to answer specific questions pertinent to:

• Viscoelastic aspects of the mechanical response of growing
tendons under different loading conditions

• Quantitative investigations of the efficacy of drugs based on
how they are administered

• Understanding the cellular processes associated with tumour
growth

• Mechanics of inflating automobile tyres!

• Ongoing work includes:
• Extending the computational formulation to a viscoelastic solid

and a viscous fluid
• Introducing nonlinear viscoelasticity
• Exploring the experimental literature to directly correlate some

of the thermodynamic findings
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