Tendon Growth and Healing: The Roles of Reaction, Transport and Mechanics

> H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh University of Michigan

15th US National Congress on Theoretical and Applied Mechanics University of Colorado at Boulder

June 27th, 2006

(日) (周) (王) (王) (王)

Sac

Describing the system

Engineered tendon construct [Calve et al., 2004]

500

Describing the system

Engineered tendon construct [Calve et al., 2004]

Cylinder: \sim 12 mm long, 1 mm^2 in cross section

596

Defining the problem

Growth/Resorption—An addition (or loss) of mass to the tissue

< 口 > < 同 >

- E

SQC.

Defining the problem

Growth/Resorption—An addition (or loss) of mass to the tissue Damage—Trauma resulting in considerable loss of tissue mass ... and sudden changes in material properties

Damaged Ligament [Provenzano et al., 2003]

 $\mathcal{O} \mathcal{O} \mathcal{O}$

< □ ▶

Factors affecting growth and healing

Chemical environment-Implantation [Calve et al.]

Mechanics-Influence of cyclic load [Calve et al.]

- 4 🗗 ト

-

JAC+

 $\langle \Box \rangle$

Factors affecting growth and healing

Chemical environment-Implantation [Calve et al.]

Mechanics—Influence of cyclic load [Calve et al.]

-

< □ ▶

SQC.

Increase in collagen content and microstructural distribution

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities

- Enzyme Kinetics Introducing additional species to the mixture
 - $\Pi^{\mu} := \begin{pmatrix} \Pi^{\mu}_{cons} \ell \\ (r_{co}^{\mu} + r^{\mu}) \end{pmatrix} \rho_{cons} \rho_{cons} \eta_{cons} \eta_{cons} \eta_{cons}$ parameter & Mensee, 1913
- Cell Signalling Preferential growth in damaged regions

 $\Pi^{\circ} = \alpha \Pi^{\circ}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities

$$\begin{split} \Pi^{\rm c} &= \big(\frac{\rho^{\rm c}}{\rho^{\rm c}_{0\,\rm ini}}\big)^{-m}\Psi_0 - \Psi^*_0 \\ \text{[Harrigan \& Hamilton, 1993]} \end{split}$$

 Enzyme Kinetics – Introducing additional species to the mixture (Concerc) / and (Concerc) (Concerc) / and (Concerc)
 Cell Signalling – Preferential growth i damaged regions

ロト ・ 何ト ・ ヨト ・ ヨト

$$\Pi^{\circ} = \alpha \Pi^{\circ}$$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{\text{ini}}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\begin{split} \Pi^{s} &= \frac{(\Pi^{s}_{\max} \rho^{s})}{(\rho^{s}_{m} + \rho^{s})} \rho_{cell}, \quad \Pi^{c} = -\Pi^{s} \end{split}$$
[Michaelis & Menten, 1913]

 Cell Signalling – Preferential growth in damaged regions

 $\Pi^{\circ} = \alpha \Pi^{\circ}$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} ES \xrightarrow[k_{2}]{} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{ini}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\Pi^{s} = \frac{(\Pi^{s}_{\max} \rho^{s})}{(\rho^{s}_{m} + \rho^{s})} \rho_{\text{cell}}, \quad \Pi^{c} = -\Pi^{s}$$
[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in damaged regions

$$\widetilde{\Pi^{\rm c}} = \alpha \ \Pi^{\rm c}$$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} E S \xrightarrow[k_{-1}]{k_{2}} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{ini}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\Pi^{s} = \frac{(\Pi^{s}_{\max} \rho^{s})}{(\rho^{s}_{m} + \rho^{s})} \rho_{\text{cell}}, \quad \Pi^{c} = -\Pi^{s}$$
[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in damaged regions

$$\widetilde{\Pi^{\rm c}} = \alpha \ \Pi^{\rm c}$$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} E S \xrightarrow[k_{-1}]{k_{2}} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

Mass balance

Fluid – No source; concentration or flux boundary conditions

Solute – Flux and source; concentration boundary condition

< □ ▶

SQC.

Mass balance

For a species:

$$rac{\partial
ho^{\iota}}{\partial t} = \Pi^{\iota} - oldsymbol{
abla} \cdot oldsymbol{M}^{t}$$

- Solid No flux; no boundary conditions
- Fluid No source; concentration or flux boundary conditions
- Solute Flux and source; concentration boundary condition

$\frac{\partial \rho^{\iota}}{\partial t} = \Pi^{\iota} - \boldsymbol{\nabla} \cdot \boldsymbol{M}^{\iota}$

・ロト (四) (三) (三) (三) (三) (三)

Constitutive relations for fluxes

- Compatible with dissipation inequality
- Fluid flux relative to collagen $\boldsymbol{M}^{f} = \boldsymbol{D}^{f} \left(\rho^{f} \boldsymbol{F}^{T} \boldsymbol{g} + \boldsymbol{F}^{T} \boldsymbol{\nabla} \cdot \boldsymbol{P}^{f} - \boldsymbol{\nabla} \phi^{f} \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\widetilde{V}^s = V^s V^f$ $\widetilde{M}^s = D^s (- \nabla \phi^s)$
- D^f and D^s Positive semi-definite mobility tensors Magnitudes from literature:
 - Fluid wrt solid: [Han et al., 2000]
 - Solute wrt fluid [Mauck et al., 2003]

Constitutive relations for fluxes

- Compatible with dissipation inequality
- Fluid flux relative to collagen $\boldsymbol{M}^{f} = \boldsymbol{D}^{f} \left(\rho^{f} \boldsymbol{F}^{T} \boldsymbol{g} + \boldsymbol{F}^{T} \boldsymbol{\nabla} \cdot \boldsymbol{P}^{f} - \boldsymbol{\nabla} \phi^{f} \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 $$\begin{split} \widetilde{\boldsymbol{V}}^s &= \boldsymbol{V}^s \boldsymbol{V}^f \\ \widetilde{\boldsymbol{M}}^s &= \boldsymbol{D}^s \left(-\boldsymbol{\nabla} \phi^s \right) \end{split}$$

(日) (四) (平) (平)

- D¹ and D^s Positive semi-definite mobility tensors Magnitudes from literature:
 - Fluid wrt solid: [Han et al., 2000]
 - Solute wrt fluid [Mauck et al., 2003]

Constitutive relations for fluxes

- Compatible with dissipation inequality
- Fluid flux relative to collagen $M^f = D^f \left(\rho^f F^T g + F^T \nabla \cdot P^f - \nabla \phi^f \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 $$\begin{split} \widetilde{\boldsymbol{V}}^s &= \boldsymbol{V}^s \boldsymbol{V}^f \\ \widetilde{\boldsymbol{M}}^s &= \boldsymbol{D}^s \left(-\boldsymbol{\nabla} \phi^s \right) \end{split}$$

JOG CP

- *D^f* and *D^s* Positive semi-definite mobility tensors Magnitudes from literature:
 - Fluid wrt solid: [Han et al., 2000]
 - Solute wrt fluid [Mauck et al., 2003]

 $\Pi^{c} = \left(\frac{\rho^{c}}{\rho^{c}_{0_{\text{ini}}}}\right)^{-m} \Psi_{0} - \Psi_{0}^{*}$

《口》《聞》《臣》《臣》 臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$\boldsymbol{M}^{f} = \boldsymbol{D}^{f} \left(\rho^{f} \boldsymbol{F}^{T} \boldsymbol{g} + \boldsymbol{F}^{T} \boldsymbol{\nabla} \cdot \boldsymbol{P}^{f} - \boldsymbol{\nabla} \phi^{f} ight)$

・ロト (四) (三) (三) (三) (三) (三)

Momentum balance

For the fluid, velocity relative to the solid: $m{V}^f=(1/
ho^f)m{F}m{M}^f$

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Momentum balance

For the fluid, velocity relative to the solid: $V^f = (1/\rho^f) F M^f$ [Garikipati et al., 2004]

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Constitutive relations for partial stress

Stress-strain response curves of self organized tendon [Arruda et al.]

• Hyper-elastic material compatible with dissipation inequality

< □

SQC.

Worm-like chain model based internal energy density

$$\widetilde{
ho}^{\mathrm{c}} \hat{e}^{\mathrm{c}}(\boldsymbol{F}^{\mathrm{e}^{\mathrm{c}}}, \rho^{\mathrm{c}})$$

$$\begin{array}{c|c} & = & \frac{Nk\theta}{4A} \left(\frac{r^2}{2L} + \frac{L}{4(1 - r/L)} - \frac{r}{4} \right) \\ & & = & \frac{Nk\theta}{4\sqrt{2L/A}} \left(\sqrt{\frac{2A}{L}} + \frac{1}{4(1 - \sqrt{2A/L})} - \frac{1}{4} \right) \log(\lambda_1^{a^2} \lambda_2^{b^2} \lambda_3^{c^2}) \\ & & + & \frac{\gamma}{\beta} (J^{e^{\iota} - 2\beta} - 1) + 2\gamma \mathbf{1} \colon \mathbf{E}^{e^{\iota}} \end{array}$$

・ロト ・ 団ト ・ ヨト ・ ヨー ・ りへで

• Embed in multi chain model [Bischoff et al., 2002] $r = \frac{1}{2}\sqrt{a^2\lambda_1^{\mathrm{e}^2} + b^2\lambda_2^{\mathrm{e}^2} + c^2\lambda_3^{\mathrm{e}^2}}$

•
$$\lambda_I^{e}$$
 – elastic stretches along a, b, c
 $\lambda_I^{e} = \sqrt{N_I \cdot C^{e} N_I}$

Growth kinematics

- Isotropic swelling due to growth: $m{F}^{\mathrm{g}^{\iota}}=\left(rac{
 ho^{\iota}}{
 ho^{\iota}_{0_{\mathrm{ini}}}}
 ight)^{rac{1}{3}}m{1}$

Growth kinematics

• Isotropic swelling due to growth: $F^{g^{\iota}} = \left(\frac{\rho^{\iota}}{\rho^{\iota}_{0_{ini}}}\right)^{\frac{1}{3}} \mathbf{1}$ • $F = \bar{F}^{e} \tilde{F}^{e^{\iota}} F^{g^{\iota}}$; $F^{e^{\iota}} = \bar{F}^{e} \tilde{F}^{e^{\iota}}$; Internal stress due to $\tilde{F}^{e^{\iota}}$

500

Growth kinematics

• Isotropic swelling due to growth: $F^{g^{\iota}} = \left(\frac{\rho^{\iota}}{\rho^{\iota}_{0_{ini}}}\right)^{\frac{1}{3}} \mathbf{1}$ • $F = \bar{F}^{e} \tilde{F}^{e^{\iota}} F^{g^{\iota}}$; $F^{e^{\iota}} = \bar{F}^{e} \tilde{F}^{e^{\iota}}$; Internal stress due to $\tilde{F}^{e^{\iota}}$

Saturation and swelling

Example of coupled computation – Healing

- Skin damage healing; Hypertrophic scarring
- First order chemical kinetics with cell signalling: $\Pi^{\rm c}=k^{\rm f}(\rho^{\rm f}-\rho_{\rm ini}^{\rm f})\alpha$

SQC.

《曰》 《問》 《三》 《王

• Skin immersed in a fluid rich bath

Width = 2 mm, Height = 0.7 mm

Depth of damage = 2 mm

Example of coupled computation – Healing

- Skin damage healing; Hypertrophic scarring
- First order chemical kinetics with cell signalling: $\Pi^{\rm c}=k^{\rm f}(\rho^{\rm f}-\rho_{\rm ini}^{\rm f})\alpha$
- Skin immersed in a fluid rich bath

Width = 2 mm, Height = 0.7 mm

 ${\sf Depth} \,\, {\sf of} \,\, {\sf damage} = 2 \,\, {\sf mm}$

Time = 1.00E-01 s

JOC P

Vertical displacement on reload; Isotropic case

< ロト < 同ト < 三ト < 三

Example of coupled computation – Healing

- Skin damage healing; Hypertrophic scarring
- First order chemical kinetics with cell signalling: $\Pi^{\rm c}=k^{\rm f}(\rho^{\rm f}-\rho^{\rm f}_{\rm ini})\alpha$
- Skin immersed in a fluid rich bath

《曰》 《詞》 《曰》 《耳

JOC P

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Easily extended to model simple damage healing
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - · Configuration choice and physical boundary conditions

- The kinematics challenges involved
- Revisit basic kinematic assumptions to enhance model

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Easily extended to model simple damage healing
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - Configuration choice and physical boundary conditions

SOR

• The kinematics challenges involved

Revisit basic kinematic assumptions to enhance model.

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Easily extended to model simple damage healing
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - Configuration choice and physical boundary conditions

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

- The kinematics challenges involved
- Revisit basic kinematic assumptions to enhance model

Separator slide

You ought not to be here.

Saturation and Fickian diffusion

SQC.

• Change in configurational entropy with distribution of solute particles ... **if** solvent is not saturated with solute

Saturation and Fickian diffusion

only possible configuration

- Saturated \Rightarrow single configuration \Rightarrow no Fickian diffusion
- Still have concentration-gradient driven transport due to stress gradient contribution to flux

イロト イワト イヨト

SQC.