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Defining the problem

Growth/Resorption – An addition or loss of mass

Engineered tendon constructs [Calve et al., 2004]

Increasing collagen concentration with age
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Growth/Resorption – An addition or loss of mass

Engineered tendon constructs [Calve et al., 2004]

Increasing collagen concentration with age

Open system with multiple species inter-converting and interacting



Factors affecting growth

Chemical environment—Implantation [Calve et al.] Mechanics—Influence of cyclic load [Calve et al.]
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Chemical environment—Implantation [Calve et al.] Mechanics—Influence of cyclic load [Calve et al.]

Increase in collagen content and microstructural distribution



Modelling approach

Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– Undergoes transport relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– Undergo transport relative to fluid
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Brief subset of related literature:

◦ Cowin and Hegedus [1976]

◦ Kuhl and Steinmann [2002]

◦ Sengers, Oomens and Baaijens [2004]

◦ Garikipati et al. – Journal of the mechanics and physics of solids (52) 1595-1625 [2004]
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Πι – Species production
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• For a species:
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∂t = Πι − ∇X · M ι

• Solid – No flux; No boundary conditions

• Fluid – No source; Concentration or flux boundary conditions

• Solute – Flux and source; Concentration boundary condition
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Configuration and physical boundary conditions

Boundary condition specification

dρi

dt + ρi∇x · v = −∇x · mi + πi

ρι – Current species concentration
πι – Current species production
mι – Current species flux
v – Solid velocity



Balance of momentum
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• Negligible contribution to mechanics from dissolved solutes
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Growth kinematics
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Saturation and swelling

• Pores and tissue begin to swell only after reaching saturation
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1, otherwise.
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Constitutive relations

• Combine first and second laws to get dissipation inequality

• Constitutive hypothesis eι = êι(F eι
, ρι

0, η
ι)

⇒ Consistent constitutive relations

• Hyperelastic material law P ι = ρι
0

∂eι

∂F eι

• Fluid flux relative to collagen

M f = Df
(
ρf
0F T g + F T ∇X · P f − ∇X(ef − θηf )

)
• Solute flux (proteins, sugars, nutrients, . . . ) relative to fluid

Ṽ
s

= V s − V f

M̃
s

= Ds (−∇X(es − θηs))
• Df and Ds – Positive semi-definite mobility tensors

Magnitudes from literature, e.g. Mauck et al. [2003]
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Saturation and Fickian diffusion

Configuration 1 Configuration 2

• Change in configurational entropy with distribution of solute
particles . . . if solvent is not saturated with solute



Saturation and Fickian diffusion

Only possible configuration

• Saturated ⇒ Single configuration ⇒ No Fickian diffusion

• Still have concentration-gradient driven transport due to
stress gradient contribution to flux



Computational formulation details

• Implementation in FEAP

• Coupled implementation; Staggered scheme
[Armero, 1999, Garikipati et al., 2001]

• Nonlinear projection methods to treat incompressibility
[Simo et al., 1985]

• Backward Euler for time-dependent mass balance

• Mixed method for stress/strain gradient-driven fluxes
[Garikipati et al., 2001]

• Large advective terms require stabilisation



Unstable solute transport equation

• Solute transport equation with velocity split V s = Ṽ s + V f

dρs

dt
= πs − div

[
m̃s +

ρs

ρf
mf

]
− ρsdiv[v]

• Advection diffusion equation; Spatial oscillations emerge in
numerical solutions at the hyperbolic limit

• Not in a form suitable for standard stabilisation techniques
such as SUPG [Hughes et al., 1987]
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Implications of fluid incompressibility
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��
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• Incompressibility of the fluid
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= 0

• Fluid transport equation (Πf = 0)

0 =
∂ρf

∂t

∣∣∣∣
X

= −div
[
ρfvf

]
− ρfdiv [v]
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Solute transport reflecting fluid incompressibility

dρs

dt
= πs − div

[
m̃s
]
− mf · grad [ρs]

ρf
+

ρsmf · grad [ρf
]

ρf2

• Which is of a standard form and is stabilised using SUPG
[Hughes, 1987]

∂ϕ

∂t
+ a · grad [ϕ] = div [κ grad [ϕ]] + f
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Example—Nutrient delivery through patch

N · M f

N · M f

P N P N

• Simulating a tendon immersed in a bath

• Constrict it to force fluid and dissolved
nutrient flow

• Small nutrient patch on surface

• Triphasic model
• Worm-like chain model for collagen
• Ideal, nearly incompressible fluid
• Enzyme kinetics for inter-conversion

• Fluid mobility [Han et al., 2000]
Solute mobility [Mauck et al., 2003]
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Example—Results and inferences
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Summary and further work

• Physiologically relevant continuum formulation describing
growth in an open system—consistent with mixture theory

• Relevant contributors to growth and healing systematically
accounted for—biochemistry, mass transport, coupled
mechanics

• Gained insights into the problem
• The relative roles of these factors
• Influence of saturation on growth and diffusion
• Configuration choice and physical boundary conditions
• The kinematics challenges involved

• Revisit basic kinematic assumptions to enhance model
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Separator slide

You ought not to be here. Shoo.



Energy balance and entropy inequality
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Constitutive relation for mechanics
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• Embed in multi chain model [Bischoff et al., 2002]
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Possibilities for interconversion laws

• Simple first order rate law –
Constituents either “solid” or “fluid”

Πf = −kf(ρf − ρf
ini), Πc = −Πf

• Strain Energy Dependencies –
Weighted by relative densities

Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0

[Harrigan & Hamilton, 1993]

• Enzyme Kinetics – Introducing
additional species to the mixture

Πs = (Πs
maxρs)

(ρs
m+ρs) ρcell, Πc = −Πs

[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in
damaged regions

Π̃c = α Πc
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