The numerical implications of fluid incompressibility in multiphasic modelling of soft tissue growth

H. Narayanan, K. Garikipati, K. Grosh & E. M. Arruda University of Michigan

Seventh World Congress on Computational Mechanics

July 18th, 2006 – Los Angeles, CA

《日》 《周》 《三》 《马》

Jac.

Recent advances in the physics and mathematics of modelling multiphasic soft tissue growth

H. Narayanan, K. Garikipati, K. Grosh & E. M. Arruda University of Michigan

Seventh World Congress on Computational Mechanics

July 18th, 2006 – Los Angeles, CA

(日) (周) (王) (王) (王)

Jac.

Defining the problem

Growth/Resorption - An addition or loss of mass

Engineered tendon constructs [Calve et al., 2004]

Increasing collagen concentration with age

SQC.

 $\langle \Box \rangle$

- 一一司

Defining the problem

Growth/Resorption – An addition or loss of mass

Engineered tendon constructs [Calve et al., 2004]

Increasing collagen concentration with age

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Open system with multiple species inter-converting and interacting

Factors affecting growth

Chemical environment-Implantation [Calve et al.]

Mechanics-Influence of cyclic load [Calve et al.]

< f⊉ ►

- E

JAC+

 $\langle \Box \rangle$

Factors affecting growth

Chemical environment-Implantation [Calve et al.]

Mechanics-Influence of cyclic load [Calve et al.]

< □ ▶

SQC.

Increase in collagen content and microstructural distribution

Modelling approach

Classical balance laws enhanced via fluxes and sources

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - Undergoes transport relative to the solid phase

ヘロト スピト スヨト

- Dissolved solutes (sugars, proteins, ...)
 - Undergo transport relative to fluid

Modelling approach

Classical balance laws enhanced via fluxes and sources

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - Undergoes transport relative to the solid phase

(日) (周) (王) (王) (王)

Jac.

- Dissolved solutes (sugars, proteins, ...)
 - Undergo transport relative to fluid

Modelling approach

Classical balance laws enhanced via fluxes and sources

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - Undergoes transport relative to the solid phase
- Dissolved solutes (sugars, proteins, ...)
 - Undergo transport relative to fluid

Brief subset of related literature:

- Cowin and Hegedus [1976]
- Kuhl and Steinmann [2002]
- Sengers, Oomens and Baaijens [2004]
- Garikipati et al. Journal of the mechanics and physics of solids (52) 1595-1625 [2004]

《日》 《詞》 《臣》 《臣》

Sac

Balance of mass

- Solid No flux; No boundary conditions
- Fluid No source; Concentration or flux boundary conditions
- Solute Flux and source; Concentration boundary condition

 $) \land (\land)$

Balance of mass

- For a species: $\frac{\partial \rho_0^{\iota}}{\partial t} = \Pi^{\iota} \boldsymbol{\nabla}_X \cdot \boldsymbol{M}^{\iota}$
- Solid No flux; No boundary conditions
- Fluid No source; Concentration or flux boundary conditions
- Solute Flux and source; Concentration boundary condition

SQC.

Configuration and physical boundary conditions

$$rac{d
ho^i}{dt}+
ho^ioldsymbol{
abla}_x\cdotoldsymbol{v}\ =-oldsymbol{
abla}_x\cdotoldsymbol{m}^i+\pi^i$$

 $\begin{array}{l} \rho^{\iota} - \text{Current species concentration} \\ \pi^{\iota} - \text{Current species production} \\ m^{\iota} - \text{Current species flux} \\ v - \text{Solid velocity} \end{array}$

< □ ▶

SQC.

Boundary condition specification

Balance of momentum

- For a species, velocity relative to the solid: $m{V}^{\iota}=(1/
ho_{0}^{\iota})m{F}m{M}^{\iota}$

 $) \land (\land)$

Balance of momentum

• For a species, velocity relative to the solid: $V^{\iota} = (1/\rho_0^{\iota})FM^{\iota}$ $\rho_0^{\iota}\frac{\partial}{\partial t}(V + V^{\iota}) = \rho_0^{\iota}(g + q^{\iota}) + \nabla_X \cdot P^{\iota} - (\nabla_X (V + V^{\iota}))M^{\iota}$

 $) \land (\land)$

Negligible contribution to mechanics from dissolved solutes

Balance of momentum

• For a species, velocity relative to the solid: $V^{\iota} = (1/\rho_0^{\iota}) F M^{\iota}$ $\rho_0^{\iota} \frac{\partial}{\partial t} (V + V^{\iota}) = \rho_0^{\iota} (g + q^{\iota}) + \nabla_X \cdot P^{\iota} - (\nabla_X (V + V^{\iota})) M^{\iota}$

 $\mathcal{O} \mathcal{O} \mathcal{O}$

• Negligible contribution to mechanics from dissolved solutes

Growth kinematics

• Isotropic swelling due to growth: $m{F}^{\mathrm{g}^{\iota}} = \left(rac{
ho^{\iota}}{
ho^{\iota}_{\mathrm{0}_{\mathrm{ini}}}}
ight)^{rac{1}{3}} \mathbf{1}$

• $F = ar{F}^{
m e} \widetilde{F}^{e^{
m e}} F^{g^{
m e}}$; $F^{e^{
m e}} = ar{F}^{
m e} \widetilde{F}^{e^{
m e}}$; Internal stress due to \widehat{I}

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< **₽** ►

 $\langle \Box \rangle$

Growth kinematics

• Isotropic swelling due to growth: $m{F}^{\mathrm{g}^{\iota}}=\left(rac{
ho^{\iota}}{
ho^{\iota}_{\mathrm{bni}}}
ight)^{rac{1}{3}}m{1}$

• $F = \bar{F}^{e} \tilde{F}^{e^{\iota}} F^{g^{\iota}}$; $F^{e^{\iota}} = \bar{F}^{e} \tilde{F}^{e^{\iota}}$; Internal stress due to $\tilde{F}^{e^{\iota}}$

Saturation and swelling

• Pores and tissue begin to swell only after reaching saturation

SQC.

Saturation and swelling

• Pores and tissue begin to swell only after reaching saturation

$$oldsymbol{F}^{\mathrm{g}^{\iota}} = \left\{egin{array}{cc} \mathbf{1}, & \sum\limits_{\iota} v_f^{\iota} < 1 \ \left(rac{
ho_0^{\iota}}{
ho_{0\mathrm{ini}}^{\iota}}
ight)^rac{1}{3} \mathbf{1}, & \mathrm{otherwise.} \end{array}
ight.$$

500

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$ \Rightarrow Consistent constitutive relations
- Hyperelastic material law $P^{\iota} = \rho_0^{\iota} \frac{\partial e^{\iota}}{\partial R^{e}}$
- Fluid flux relative to collagen $M^{f} = D^{f} \left(\rho_{0}^{f} F^{T} g + F^{T} \nabla_{X} \cdot P^{f} - \nabla_{X} (e^{f} - \theta \eta^{f}) \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\widetilde{V}^s = V^s - V^f$ $\widetilde{M}^s = D^s (-\nabla_X (e^s - \theta \eta^s))$
- D^f and D^s Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$ \Rightarrow Consistent constitutive relations
- Hyperelastic material law $P^{\iota} = \rho_0^{\iota} \frac{\partial e^{\iota}}{\partial F^{e^{\iota}}}$
- Fluid flux relative to collagen
 M^f = D^f (ρ^f₀F^Tg + F^T∇_X · P^f − ∇_X(e^f − θη^f))
 Solute flux (proteins, sugars, nutrients, ...) relative to fluic
 - $egin{array}{l} \widetilde{m{V}}^s = m{V}^s m{V}^f \ \widetilde{m{M}}^s = m{D}^s \left(m{
 abla}_X (e^s heta \eta^s)
 ight) \end{array}$
- D^f and D^s Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$ \Rightarrow Consistent constitutive relations
- Hyperelastic material law $P^{\iota} = \rho_0^{\iota} \frac{\partial e^{\iota}}{\partial F^{e^{\iota}}}$
- Fluid flux relative to collagen $\boldsymbol{M}^{f} = \boldsymbol{D}^{f} \left(\rho_{0}^{f} \boldsymbol{F}^{T} \boldsymbol{g} + \boldsymbol{F}^{T} \boldsymbol{\nabla}_{X} \cdot \boldsymbol{P}^{f} - \boldsymbol{\nabla}_{X} (e^{f} - \theta \eta^{f}) \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\widetilde{V}^s = V^s - V^f$ $\widetilde{M}^s = D^s (-\nabla_X (e^s - \theta \eta^s))$

 D^f and D^s – Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis e^ι = ê^ι(F^{e^ι}, ρ^ι₀, η^ι) ⇒ Consistent constitutive relations
- Hyperelastic material law $P^{\iota} = \rho_0^{\iota} \frac{\partial e^{\iota}}{\partial F^{e^{\iota}}}$
- Fluid flux relative to collagen $\boldsymbol{M}^{f} = \boldsymbol{D}^{f} \left(\rho_{0}^{f} \boldsymbol{F}^{T} \boldsymbol{g} + \boldsymbol{F}^{T} \boldsymbol{\nabla}_{X} \cdot \boldsymbol{P}^{f} - \boldsymbol{\nabla}_{X} (e^{f} - \theta \eta^{f}) \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 $$\begin{split} \widetilde{\boldsymbol{V}}^s &= \boldsymbol{V}^s - \boldsymbol{V}^f \\ \widetilde{\boldsymbol{M}}^s &= \boldsymbol{D}^s \left(-\boldsymbol{\nabla}_X (e^s - \theta \eta^s) \right) \end{split}$$

Sac

D^f and *D^s* – Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

Saturation and Fickian diffusion

SQC.

• Change in configurational entropy with distribution of solute particles ... **if** solvent is not saturated with solute

Saturation and Fickian diffusion

Only possible configuration

- Saturated \Rightarrow Single configuration \Rightarrow No Fickian diffusion
- Still have concentration-gradient driven transport due to stress gradient contribution to flux

イロト イワト イヨト

SQC.

Computational formulation details

- Implementation in FEAP
- Coupled implementation; Staggered scheme [Armero, 1999, Garikipati et al., 2001]
- Nonlinear projection methods to treat incompressibility [Simo et al., 1985]
- Backward Euler for time-dependent mass balance
- Mixed method for stress/strain gradient-driven fluxes [Garikipati et al., 2001]

イロト イ押ト イヨト イヨト ヨー わくや

• Large advective terms require stabilisation

Unstable solute transport equation

• Solute transport equation with velocity split $m{V}^{\mathrm{s}}=\widetilde{m{V}^{\mathrm{s}}}+m{V}^{f}$

$$\frac{\mathrm{d}\rho^{\mathrm{s}}}{\mathrm{d}t} = \pi^{\mathrm{s}} - \mathsf{div}\left[\widetilde{\boldsymbol{m}^{\mathrm{s}}} + \frac{\rho^{\mathrm{s}}}{\rho^{f}}\boldsymbol{m}^{f}\right] - \rho^{\mathrm{s}}\mathsf{div}[\boldsymbol{v}]$$

 Advection diffusion equation; Spatial oscillations emerge in numerical solutions at the hyperbolic limit

 Not in a form suitable for standard stabilisation techniques such as SUPG [Hughes et al., 1987]

Unstable solute transport equation

• Solute transport equation with velocity split $V^{
m s}=\widetilde{V^{
m s}}+V^{f}$

$$\frac{\mathrm{d}\rho^{\mathrm{s}}}{\mathrm{d}t} = \pi^{\mathrm{s}} - \mathsf{div}\left[\widetilde{\boldsymbol{m}^{\mathrm{s}}} + \frac{\rho^{\mathrm{s}}}{\rho^{f}}\boldsymbol{m}^{f}\right] - \rho^{\mathrm{s}}\mathsf{div}[\boldsymbol{v}]$$

 Advection diffusion equation; Spatial oscillations emerge in numerical solutions at the hyperbolic limit

Spatial oscillations using standard Galerkin scheme

 Not in a form suitable for standard stabilisation techniques such as SUPG [Hughes et al., 1987]

Unstable solute transport equation

• Solute transport equation with velocity split $m{V}^{\mathrm{s}}=\widetilde{m{V}^{\mathrm{s}}}+m{V}^{f}$

$$\frac{\mathrm{d}\rho^{\mathrm{s}}}{\mathrm{d}t} = \pi^{\mathrm{s}} - \mathsf{div}\left[\widetilde{\boldsymbol{m}^{\mathrm{s}}} + \frac{\rho^{\mathrm{s}}}{\rho^{f}}\boldsymbol{m}^{f}\right] - \rho^{\mathrm{s}}\mathsf{div}[\boldsymbol{v}]$$

• Advection diffusion equation; Spatial oscillations emerge in numerical solutions at the hyperbolic limit

Spatial oscillations using standard Galerkin scheme

SQC.

• Not in a form suitable for standard stabilisation techniques such as SUPG [Hughes et al., 1987]

Implications of fluid incompressibility

$$\begin{split} \rho_0^{\rm f}(\boldsymbol{X},0) &=: \rho_{0\rm ini}^{\rm f}(\boldsymbol{X}) \\ &= \rho_{\rm ini}^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi}) J(\boldsymbol{X},t) \\ &= \frac{\rho^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi},t)}{J^{f_{\rm g}}(\boldsymbol{X},t)} J(\boldsymbol{X},t) \\ &= \rho^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi},t) \mathcal{J}^{f_{\rm e}}(\boldsymbol{X},t) \end{split}$$

Incompressibility of the fluid

$$\frac{\partial}{\partial t} \left(\rho^f_{0_{\mathrm{ini}}}(\boldsymbol{X}) \right) \equiv 0 \Rightarrow \frac{\partial}{\partial t} \left(\rho^f(\boldsymbol{x} \circ \boldsymbol{\varphi}, t) \right) = 0$$

• Fluid transport equation $(\Pi^{\rm f} = 0)$

$$0 = \frac{\partial \rho^{f}}{\partial t} \Big|_{X} = -\operatorname{div} \left[\rho^{f} \boldsymbol{v}^{f} \right] - \rho^{f} \operatorname{div} \left[\boldsymbol{v} \right]$$

《日》 《聞》 《臣》 《臣》

SQC.

Implications of fluid incompressibility

$$\begin{split} \rho_0^{\mathrm{f}}(\boldsymbol{X}, 0) &=: \rho_{0_{\mathrm{ini}}}^{\mathrm{f}}(\boldsymbol{X}) \\ &= \rho_{\mathrm{ini}}^{\mathrm{f}}(\boldsymbol{x} \circ \boldsymbol{\varphi}) J(\boldsymbol{X}, t) \\ &= \frac{\rho^{\mathrm{f}}(\boldsymbol{x} \circ \boldsymbol{\varphi}, t)}{J^{f_{\mathrm{g}}}(\boldsymbol{X}, t)} J(\boldsymbol{X}, t) \\ &= \rho^{\mathrm{f}}(\boldsymbol{x} \circ \boldsymbol{\varphi}, t) \mathcal{Y}^{\mathrm{e}}(\boldsymbol{X}, t) \end{split}$$

• Incompressibility of the fluid

$$\frac{\partial}{\partial t}\left(\rho^f_{0_{\mathrm{ini}}}(\boldsymbol{X})\right)\equiv 0 \Rightarrow \frac{\partial}{\partial t}\left(\rho^f(\boldsymbol{x}\circ\boldsymbol{\varphi},t)\right)=0$$

• Fluid transport equation $(\Pi^{r} = 0)$

$$0 = \left. \frac{\partial \rho^{f}}{\partial t} \right|_{\boldsymbol{X}} = -\mathsf{div} \left[\rho^{f} \boldsymbol{v}^{f} \right] - \rho^{f} \mathsf{div} \left[\boldsymbol{v} \right]$$

《曰》 《圖》 《言》 《言》

5900

Implications of fluid incompressibility

$$\begin{split} \rho_0^{\rm f}(\boldsymbol{X},0) &=: \rho_{0_{\rm ini}}^{\rm f}(\boldsymbol{X}) \\ &= \rho_{\rm ini}^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi}) J(\boldsymbol{X},t) \\ &= \frac{\rho^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi},t)}{J^{f_{\rm g}}(\boldsymbol{X},t)} J(\boldsymbol{X},t) \\ &= \rho^{\rm f}(\boldsymbol{x} \circ \boldsymbol{\varphi},t) \mathcal{Y}^{\rm e}(\boldsymbol{X},t) \end{split}$$

• Incompressibility of the fluid

$$\frac{\partial}{\partial t} \left(\rho^f_{0_{\mathrm{ini}}}(\boldsymbol{X}) \right) \equiv 0 \Rightarrow \frac{\partial}{\partial t} \left(\rho^f(\boldsymbol{x} \circ \boldsymbol{\varphi}, t) \right) = 0$$

• Fluid transport equation ($\Pi^{f} = 0$)

$$0 = \frac{\partial \rho^{f}}{\partial t} \Big|_{\mathbf{X}} = -\operatorname{div}\left[\rho^{f} \boldsymbol{v}^{f}\right] - \rho^{f} \operatorname{div}\left[\boldsymbol{v}\right]$$

Solute transport reflecting fluid incompressibility

$$\frac{\mathrm{d}\rho^{\mathrm{s}}}{\mathrm{d}t} = \pi^{\mathrm{s}} - \mathsf{div}\left[\widetilde{\boldsymbol{m}^{\mathrm{s}}}\right] - \frac{\boldsymbol{m}^{f} \cdot \mathsf{grad}\left[\rho^{\mathrm{s}}\right]}{\rho^{f}} + \frac{\rho^{\mathrm{s}}\boldsymbol{m}^{f} \cdot \mathsf{grad}\left[\rho^{f}\right]}{\rho^{f^{2}}}$$

 Which is of a standard form and is stabilised using SUPG [Hughes, 1987]

 $rac{\partial arphi}{\partial t} + oldsymbol{a} \cdot oldsymbol{\mathsf{grad}}\left[arphi
ight] = \operatorname{\mathsf{div}}\left[\kappa \, \operatorname{\mathsf{grad}}\left[arphi
ight]
ight] + f$

Solute transport reflecting fluid incompressibility

$$\frac{\mathrm{d}\rho^{\mathrm{s}}}{\mathrm{d}t} = \pi^{\mathrm{s}} - \mathsf{div}\left[\widetilde{\boldsymbol{m}^{\mathrm{s}}}\right] - \frac{\boldsymbol{m}^{f} \cdot \mathsf{grad}\left[\rho^{\mathrm{s}}\right]}{\rho^{f}} + \frac{\rho^{\mathrm{s}}\boldsymbol{m}^{f} \cdot \mathsf{grad}\left[\rho^{f}\right]}{\rho^{f^{2}}}$$

• Which is of a standard form and is stabilised using SUPG [Hughes, 1987]

$$rac{\partial arphi}{\partial t} + oldsymbol{a} \cdot \operatorname{\mathsf{grad}}\left[arphi
ight] = \operatorname{\mathsf{div}}\left[\kappa \, \operatorname{\mathsf{grad}}\left[arphi
ight]
ight] + f$$

Smooth solutions using SUPG scheme

SQC.

Example—Nutrient delivery through patch

- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow
- Small nutrient patch on surface

Worm-like chain model for collagen
 Ideal, nearly incompressible fluid
 Enzyme kinetics for inter-conversion

 Fluid mobility [Han et al., 2000] Solute mobility [Mauck et al., 2003]

 $\neg \circ \land$

Example—Nutrient delivery through patch

- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow
- Small nutrient patch on surface
- Triphasic model
 - Worm-like chain model for collagen
 - Ideal, nearly incompressible fluid
 - Enzyme kinetics for inter-conversion

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Fluid mobility [Han et al., 2000] Solute mobility [Mauck et al., 2003]

Example—Nutrient delivery through patch

- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow
- Small nutrient patch on surface
- Triphasic model
 - Worm-like chain model for collagen
 - Ideal, nearly incompressible fluid
 - Enzyme kinetics for inter-conversion

 $\mathcal{O} \mathcal{O} \mathcal{O}$

• Fluid mobility [Han et al., 2000] Solute mobility [Mauck et al., 2003]

Example—Results and inferences

Patch-like nutrient boundary condition specification

Evolution of solute concentration

Sac

Small stress-gradient driven flux; Diffusion dominated

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - Configuration choice and physical boundary conditions

- The kinematics challenges involved
- Revisit basic kinematic assumptions to enhance model

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - Configuration choice and physical boundary conditions

《日》 《周》 《三》 《马》

SOR

• The kinematics challenges involved

Revisit basic kinematic assumptions to enhance model

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system—consistent with mixture theory
- Relevant contributors to growth and healing systematically accounted for—biochemistry, mass transport, coupled mechanics
- Gained insights into the problem
 - The relative roles of these factors
 - Influence of saturation on growth and diffusion
 - Configuration choice and physical boundary conditions

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

- The kinematics challenges involved
- Revisit basic kinematic assumptions to enhance model

Separator slide

You ought not to be here. Shoo.

《日》《圖》《臺》《臺》

Ē

5900

Energy balance and entropy inequality

- ρ_0^ι Species concentration
- e^{ι} Specific internal energy
- P^{ι} Partial stress
- F Deformation gradient
- V^{ι} Species relative velocity

SQC.

- $oldsymbol{Q}^{\iota}$ Partial heat flux
- r^{ι} Species heat supply
- \tilde{e}^{ι} Energy transfer
- M^{ι} Species flux

$$\rho_0^{\iota} \frac{\partial e^{\iota}}{\partial t} = \boldsymbol{P}^{\iota} \colon \dot{\boldsymbol{F}} + \boldsymbol{P}^{\iota} \colon \boldsymbol{\nabla}_X \boldsymbol{V}^{\iota} - \boldsymbol{\nabla}_X \cdot \boldsymbol{Q}^{\iota} + r^{\iota} + \rho_0^{\iota} \tilde{e}^{\iota} - \boldsymbol{\nabla}_X e^{\iota} \cdot (\boldsymbol{M}^{\iota})$$

Energy balance and entropy inequality

- ρ_0^ι Species concentration
- e^{ι} Specific internal energy
- P^{ι} Partial stress
- F Deformation gradient
- V^{ι} Species relative velocity
- $oldsymbol{Q}^{\iota}$ Partial heat flux
- r^{ι} Species heat supply
- \tilde{e}^{ι} Energy transfer
- M^{ι} Species flux
- η^{ι} Species entropy
- θ Temperature

$$\rho_0^{\iota} \frac{\partial e^{\iota}}{\partial t} = \boldsymbol{P}^{\iota} \colon \dot{\boldsymbol{F}} + \boldsymbol{P}^{\iota} \colon \boldsymbol{\nabla}_X \boldsymbol{V}^{\iota} - \boldsymbol{\nabla}_X \cdot \boldsymbol{Q}^{\iota} + r^{\iota} + \rho_0^{\iota} \tilde{e}^{\iota} - \boldsymbol{\nabla}_X e^{\iota} \cdot (\boldsymbol{M}^{\iota})$$

$$\sum_{\iota=\alpha}^{\omega} \rho_0^{\iota} \frac{\partial \eta^{\iota}}{\partial t} \geq \sum_{\iota=\alpha}^{\omega} \left(\frac{r^{\iota}}{\theta} - \boldsymbol{\nabla}_X \eta^{\iota} \cdot \boldsymbol{M}^{\iota} - \frac{\boldsymbol{\nabla}_X \cdot \boldsymbol{Q}^{\iota}}{\theta} + \frac{\boldsymbol{\nabla}_X \theta \cdot \boldsymbol{Q}^{\iota}}{\theta^2} \right)$$

Constitutive relation for mechanics

 $\widetilde{\rho_0}^{\mathrm{c}} \hat{e}^{\mathrm{c}}(\boldsymbol{F}^{\mathrm{e}^{\mathrm{c}}}, \rho_0^{\mathrm{c}})$

$$\begin{array}{c} \left. \begin{array}{c} & \\ & \\ \hline \\ & \\ \end{array} \right|^{b} & = \frac{Nk\theta}{4A} \left(\frac{r^{2}}{2L} + \frac{L}{4(1 - r/L)} - \frac{r}{4} \right) \\ & \\ & \\ & \\ & \\ \end{array} \right|^{b} & - \frac{Nk\theta}{4\sqrt{2L/A}} \left(\sqrt{\frac{2A}{L}} + \frac{1}{4(1 - \sqrt{2A/L})} - \frac{1}{4} \right) \log(\lambda_{1}^{a^{2}} \lambda_{2}^{b^{2}} \lambda_{3}^{c^{2}}) \\ & \\ & \\ & \\ & + \frac{\gamma}{\beta} (J^{e^{\iota - 2\beta}} - 1) + 2\gamma \mathbf{1} \colon \boldsymbol{E}^{e^{\iota}} \end{array}$$

・ロト ・ 団ト ・ ヨト ・ ヨー ・ りへで

• Embed in multi chain model [Bischoff et al., 2002] $r = \frac{1}{2}\sqrt{a^2\lambda_1^{\mathrm{e}^2} + b^2\lambda_2^{\mathrm{e}^2} + c^2\lambda_3^{\mathrm{e}^2}}$

•
$$\lambda_I^{e}$$
 – elastic stretches along a, b, c
 $\lambda_I^{e} = \sqrt{N_I \cdot C^{e} N_I}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities

- Enzyme Kinetics Introducing additional species to the mixture
 - $\Pi^{\mu} := \begin{pmatrix} \Pi^{\mu}_{cons} \ell \\ (r_{co}^{\mu} + r^{\mu}) \end{pmatrix} \rho_{cons} \rho_{cons} \eta_{cons} \eta_{cons} \eta_{cons}$ parameter & Mensee, 1913
- Cell Signalling Preferential growth in damaged regions

 $\Pi^{\circ} = \alpha \Pi^{\circ}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities

$$\begin{split} \Pi^{\rm c} &= \big(\frac{\rho^{\rm c}}{\rho^{\rm c}_{0\,\rm ini}}\big)^{-m}\Psi_0 - \Psi^*_0 \\ \text{[Harrigan \& Hamilton, 1993]} \end{split}$$

ロトス得トスラトスラー

$$\Pi^{\circ} = \alpha \Pi^{\circ}$$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{\text{ini}}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\begin{split} \Pi^{s} &= \frac{(\Pi^{s}_{\max} \rho^{s})}{(\rho^{s}_{m} + \rho^{s})} \rho_{cell}, \quad \Pi^{c} = -\Pi^{s} \end{split}$$
[Michaelis & Menten, 1913]

 Cell Signalling – Preferential growth in damaged regions

 $\Pi^{c} = \alpha \Pi^{c}$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} ES \xrightarrow[k_{2}]{} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{ini}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\Pi^{s} = \frac{(\Pi^{s}_{\max}\rho^{s})}{(\rho^{s}_{m} + \rho^{s})}\rho_{cell}, \quad \Pi^{c} = -\Pi^{s}$$
[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in damaged regions

$$\widetilde{\Pi^{\rm c}} = \alpha \ \Pi^{\rm c}$$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} E S \xrightarrow[k_{-1}]{k_{2}} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

- Simple first order rate law Constituents either "solid" or "fluid" $\Pi^{\rm f} = -k^{\rm f}(\rho^{\rm f} - \rho^{\rm f}_{\rm ini}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$
- Strain Energy Dependencies Weighted by relative densities $\Pi^{c} = (\frac{\rho^{c}}{\rho^{c}_{0_{ini}}})^{-m}\Psi_{0} - \Psi^{*}_{0}$ [Harrigan & Hamilton, 1993]
- Enzyme Kinetics Introducing additional species to the mixture

$$\Pi^{s} = \frac{(\Pi^{s}_{\max}\rho^{s})}{(\rho^{s}_{m} + \rho^{s})}\rho_{cell}, \quad \Pi^{c} = -\Pi^{s}$$
[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in damaged regions

$$\widetilde{\Pi^{\rm c}} = \alpha \ \Pi^{\rm c}$$

Enzyme Kinetics
$E + S \xrightarrow[k_{-1}]{k_{1}} E S \xrightarrow[k_{-1}]{k_{2}} E + P$
\boldsymbol{k}_1 - Association of substrate and enzyme
k_{-1} - Dissociation of unaltered substrate
k_2 - Formation of product
$\rho_m^{\rm s} = \frac{(k_2+k_{-1})}{k_1}$

