A Continuum Treatment of Coupled Mass Transport and Mechanics in Growing Soft Biological Tissue

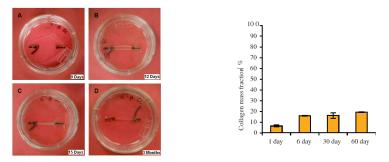
H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh and S. Calve

2004 MRS Fall Meeting Boston, MA

November 29th – December 3rd, 2004

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Controlled experiments motivate and validate the descriptive model

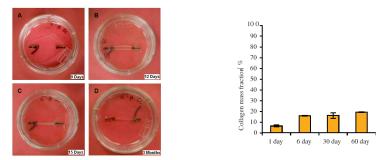


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Growth – an addition/loss of mass

... Increasing collagen concentration with age

Controlled experiments motivate and validate the descriptive model



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Growth – an addition/loss of mass ... Increasing collagen concentration with age

Arising Issues and Our Current Treatment

Multiple species interconverting and interacting

- Collagen, proteoglycans, ECF, solutes (sugars, proteins, ...)
- Change in concentration Growth
- Interactions via momentum and energy transfer
- Introducing fluxes and sources
- Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Solutes diffusing relative to fluid

Multiple species interconverting and interacting

- Collagen, proteoglycans, ECF, solutes (sugars, proteins, ...)
- Change in concentration Growth
- Interactions via momentum and energy transfer

This current work involves

- Introducing fluxes and sources
- Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solutes diffusing relative to fluid

Multiple species interconverting and interacting

- Collagen, proteoglycans, ECF, solutes (sugars, proteins, ...)
- Change in concentration Growth
- Interactions via momentum and energy transfer

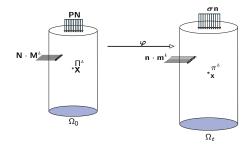
This current work involves

- Introducing fluxes and sources
- Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)
- Solutes diffusing relative to fluid

Literature:

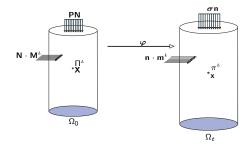
- Cowin and Hegedus [1976]
- Kuhl and Steinmann [2002]
- Baaijens et al. [2004]
- Garikipati et al. Journal of the Mechanics and Physics of Solids (52) 1595-1625 [2004]

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの



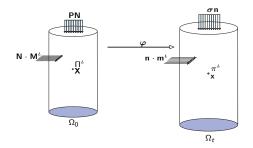
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- For collagen: $\frac{\partial \rho_0^c}{\partial t} = \Pi^c$
- No boundary conditions.



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

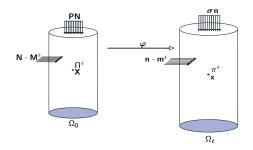
- For collagen: $\frac{\partial \rho_0^c}{\partial t} = \Pi^c$
- No boundary conditions.



► For the fluid: $\frac{\partial \rho_0^f}{\partial t} = -\nabla_X \cdot \mathbf{M}^f$

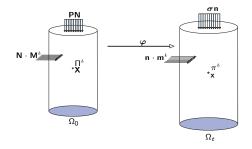
Concentration or flux boundary conditions – Tissue exposed to fluid in a bath, fluid injected in at the boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



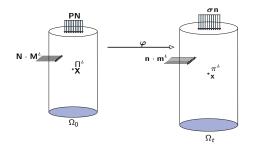
- ► For the fluid: $\frac{\partial \rho_0^f}{\partial t} = -\nabla_X \cdot \mathbf{M}^f$
- Concentration or flux boundary conditions Tissue exposed to fluid in a bath, fluid injected in at the boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



- For a solute: $\frac{\partial \rho_0^s}{\partial t} = \Pi^s \nabla_X \cdot \mathbf{M}^s$
- Concentration boundary condition Tissue exposed to solute in solution in a bath

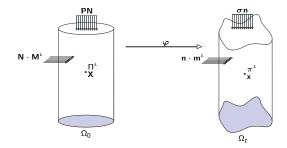
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



- For a solute: $\frac{\partial \rho_0^s}{\partial t} = \Pi^s \nabla_X \cdot \mathbf{M}^s$
- Concentration boundary condition Tissue exposed to solute in solution in a bath

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

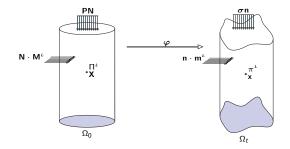
The Balance of Momentum



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

► For collagen: $\rho_0^c \frac{\partial \mathbf{V}}{\partial t} = \rho_0^c (\mathbf{g} + \mathbf{q}^c) + \nabla_X \cdot \mathbf{P}^c$

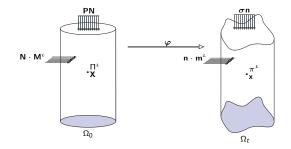
The Balance of Momentum



• Velocity relative to the solid $\mathbf{V}^f = (1/\rho_0^f) \mathbf{F} \mathbf{M}^f$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

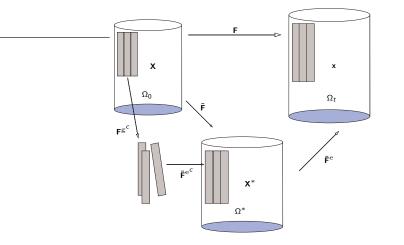
The Balance of Momentum



- Velocity relative to the solid $\mathbf{V}^f = (1/\rho_0^f) \mathbf{F} \mathbf{M}^f$
- ► For the fluid: $\rho_0^f \frac{\partial}{\partial t} \left(\mathbf{V} + \mathbf{V}^f \right) = \rho_0^f \left(\mathbf{g} + \mathbf{q}^f \right) + \nabla_X \cdot \mathbf{P}^f$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

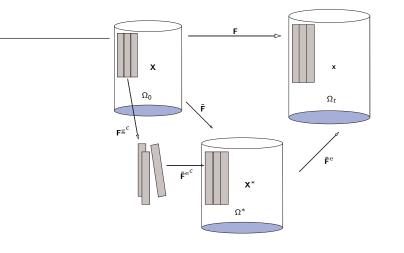
Kinematics of Growth



 $\blacktriangleright \mathbf{F} = \mathbf{\bar{F}}^{e} \mathbf{\tilde{F}}^{e^{c}} \mathbf{F}^{g^{c}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Kinematics of Growth



 $\blacktriangleright \mathbf{F} = \mathbf{\bar{F}}^{\mathrm{e}} \mathbf{\tilde{F}}^{\mathrm{e}^{\mathrm{c}}} \mathbf{F}^{\mathrm{g}^{\mathrm{c}}}$

 \blacktriangleright Residual stress due to $\tilde{\textbf{F}}^{\mathrm{e^{c}}}$

Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$
- Collagen Stress: $\mathbf{P}^{c} = \rho_{0}^{c} \frac{\partial e^{c}}{\partial \mathbf{r}^{e^{c}}}$
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

- ► Fluid Stress: $\mathbf{P}^{f} = \rho_{0}^{f} \frac{\partial e^{f}}{\partial \mathbf{F}^{e^{f}}} \mathbf{F}^{g^{f}}$
 - Ideal Fluid
 - $\rho_0^f \hat{e}^f = \frac{1}{2}\kappa (det(\mathbf{F}^{e'}) \mathbf{1})^2$, κ fluid bulk modulus

Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$
- ► Collagen Stress: $\mathbf{P}^{c} = \rho_{0}^{c} \frac{\partial e^{c}}{\partial \mathbf{F}^{e^{c}}} \mathbf{F}^{g^{c}-T}$
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

► Fluid Stress: $\mathbf{P}^{f} = \rho_{0}^{f} \frac{\partial e^{t}}{\partial \mathbf{F}^{e^{f}}} \mathbf{F}^{g^{t}}$ ► Ideal Fluid ► $\rho_{0}^{f} \hat{e}^{f} = \frac{1}{2} \kappa (det(\mathbf{F}^{e^{t}}) - \mathbf{1})^{2}, \kappa - fluid bulk modulus$

Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: $e^{\iota} = \hat{e}^{\iota}(\mathbf{F}^{e^{\iota}}, \rho_0^{\iota}, \eta^{\iota})$
- Collagen Stress: $\mathbf{P}^{c} = \rho_{0}^{c} \frac{\partial e^{c}}{\partial \mathbf{F}^{e^{c}}} \mathbf{F}^{g^{c}-T}$
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fluid Stress:
$$\mathbf{P}^{f} = \rho_{0}^{f} \frac{\partial e^{f}}{\partial \mathbf{F}^{e^{f}}} \mathbf{F}^{g^{f}-T}$$

• Ideal Fluid • $\rho_0^f \hat{e}^f = \frac{1}{2}\kappa (det(\mathbf{F}^{e^f}) - \mathbf{1})^2$, κ – fluid bulk modulus

Constitutive Relations - Worm-like Chain Model for Collagen

 $\sim c \wedge c / r e^{c}$ c)

$$\rho_{0}^{c}e^{c}(\mathbf{r} , \rho_{0}^{c}) = \frac{Nk\theta}{4A} \left(\frac{r^{2}}{2L} + \frac{L}{4(1 - r/L)} - \frac{r}{4}\right)$$

$$= \frac{Nk\theta}{4\sqrt{2L/A}} \left(\sqrt{\frac{2A}{L}} + \frac{1}{4(1 - \sqrt{2A/L})} - \frac{1}{4}\right) \log(\lambda_{1}^{a^{2}}\lambda_{2}^{b^{2}}\lambda_{3}^{c^{2}})$$

$$+ \frac{\gamma}{\beta} (J^{e^{\iota} - 2\beta} - 1) + 2\gamma \mathbf{1} : \mathbf{E}^{e^{\iota}}$$

 Embed in Arruda-Boyce Eight Chain Model [1993] r = ¹/₂√a²λ₁^{e²} + b²λ₂^{e²} + c²λ₃^{e²}

 λ_I^e - elastic stretches along a, b, c λ_I^e = √N_I · C^eN_I

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constitutive Relations - Fluxes

► Fluid flux relative to collagen $\mathbf{M}^{f} = \mathbf{D}^{f} \left(\rho_{0}^{f} \mathbf{F}^{\mathrm{T}} \mathbf{g} + \mathbf{F}^{\mathrm{T}} \nabla_{X} \cdot \mathbf{P}^{f} - \nabla_{X} (e^{f} - \theta \eta^{f}) \right)$

Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\tilde{\mathbf{V}}^{s} = \mathbf{V}^{s} - \mathbf{V}^{f}$ $\tilde{\mathbf{M}}^{s} = \mathbf{D}^{s} (-\nabla_{X} (e^{s} - \theta \eta^{s}))$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

D^r and D^s – Positive semi-definite mobility tensors

Constitutive Relations - Fluxes

Fluid flux relative to collagen

$$\mathbf{M}^{f} = \mathbf{D}^{f} \left(\rho_{0}^{f} \mathbf{F}^{\mathrm{T}} \mathbf{g} + \mathbf{F}^{\mathrm{T}} \nabla_{X} \cdot \mathbf{P}^{f} - \nabla_{X} (e^{f} - \theta \eta^{f}) \right)$$

► Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\tilde{\mathbf{V}}^s = \mathbf{V}^s - \mathbf{V}^f$ $\tilde{\mathbf{M}}^s = \mathbf{D}^s (-\nabla_X (e^s - \theta \eta^s))$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

D' and D' – Positive semi-definite mobility tensors

Constitutive Relations - Fluxes

► Fluid flux relative to collagen

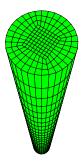
$$\mathbf{M}^{f} = \mathbf{D}^{f} \left(\rho_{0}^{f} \mathbf{F}^{\mathrm{T}} \mathbf{g} + \mathbf{F}^{\mathrm{T}} \nabla_{X} \cdot \mathbf{P}^{f} - \nabla_{X} (e^{f} - \theta \eta^{f}) \right)$$

► Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\tilde{\mathbf{V}}^s = \mathbf{V}^s - \mathbf{V}^f$ $\tilde{\mathbf{M}}^s = \mathbf{D}^s \left(-\nabla_X (e^s - \theta \eta^s)\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

D^f and D^s – Positive semi-definite mobility tensors

Coupled Computations – Examples



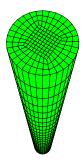
Biphasic model

- worm-like chain model for collagen
- ideal, nearly incompressible interstitial fluid with bulk compressibility of water

"Artificial" sources: \$\Pi^f = -k^f(\rho_0^f - \rho_{0_{min}}^f)\$, \$\Pi^c = -\Pi^f\$
 Entropy of mixing: \$\eta_{mix}^f = -\frac{k}{M^f} \log \frac{\rho_0^f}{\rho_0}\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Coupled Computations – Examples

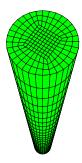


Biphasic model

- worm-like chain model for collagen
- ideal, nearly incompressible interstitial fluid with bulk compressibility of water
- fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]

"Artificial" sources: Π^I = -k^I(ρ^I₀ - ρ^I_{0ini}), Π^c = -Π
 Entropy of mixing: η^f_{mix} = - ^k/_{M^I} log <sup>ρ^I₀/_{ρ0}
</sup>

Coupled Computations - Examples



- Biphasic model
 - worm-like chain model for collagen
 - ideal, nearly incompressible interstitial fluid with bulk compressibility of water
 - fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]
- "Artificial" sources: $\Pi^{f} = -k^{f}(\rho_{0}^{f} \rho_{0_{ini}}^{f}), \quad \Pi^{c} = -\Pi^{f}$

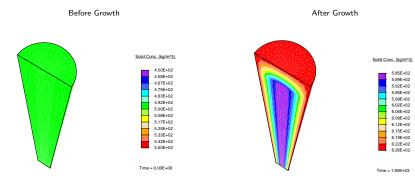
・ロト・日本・日本・日本・日本・今日・

• Entropy of mixing: $\eta_{\text{mix}}^{f} = -\frac{k}{\mathcal{M}^{f}} \log \frac{\rho_{0}^{f}}{\rho_{0}}$

Coupled Computations – Examples – Constants

Parameter	Symbol	Value	Units
Chain density	N	$7 imes 10^{21}$	m^{-3}
Temperature	heta	310.0	K
Persistence length	A	1.3775	-
Fully-stretched length	L	25.277	-
Unit cell axes	a, b, c	9.3, 12.4, 6.2	-
Bulk compressibility factors	$\gamma,~eta$	1000, 4.5	-
Fluid bulk modulus	κ	1	GPa
Fluid mobility tensor	$D_{ij} = D\delta_{ij}$	$1 imes 10^{-8}$	${\rm m}^{-2}{\rm sec}$
Fluid conversion reac. rate	k ^f	$-1. imes 10^{-7}$	sec^{-1}
Gravitational acceleration	g	9.81	${ m m.sec^{-2}}$
Fluid mol. wt.	\mathcal{M}^{f}	2.9885×10^{-23}	kg

Coupled Computations - Examples - Swelling

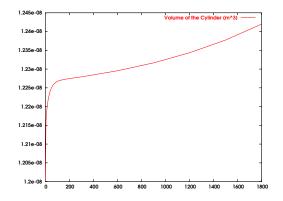


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- fluid concentration evolution
- fluid sink evolution
- collagen concentration evolution

Coupled Computations - Examples - Swelling

Cylinder Volume Evolution with Time



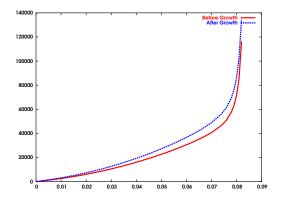
fluid concentration evolution

fluid sink evolution

collagen concentration evolution

Coupled Computations - Examples - Swelling

Stress vs Extension Curves

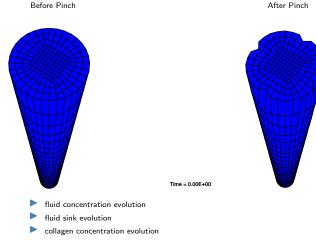


fluid concentration evolution

fluid sink evolution

collagen concentration evolution

Coupled Computations - Examples - Pinching





Time = 1.00E+01

Summary and Further Work

- Physiologically consistent continuum formulation describing growth in an open system
- Relevant driving forces arise from thermodynamics coupling with mechanics
- Consistent with mixture theory
- Lattice Boltzmann studies to determine effective transport properties
- Coarse-grained molecular dynamics simulations to investigate the elasticity of collagen fibrils

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- Formulated a theoretical framework for the remodelling problem
- Engineering and characterization of growing, functional biological tissue

Summary and Further Work

- Physiologically consistent continuum formulation describing growth in an open system
- Relevant driving forces arise from thermodynamics coupling with mechanics
- Consistent with mixture theory
- Lattice Boltzmann studies to determine effective transport properties
- Coarse-grained molecular dynamics simulations to investigate the elasticity of collagen fibrils
- Formulated a theoretical framework for the remodelling problem
- Engineering and characterization of growing, functional biological tissue