Coupled Mechanics and Transport in Growing Soft Tissue

Nutrient transport is pivotal

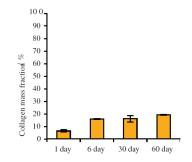
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh & S. Calve University of Michigan McMat 2005 – Baton Rouge, LA June 3rd, 2005

Motivation and definition

Growth - An addition or loss of mass

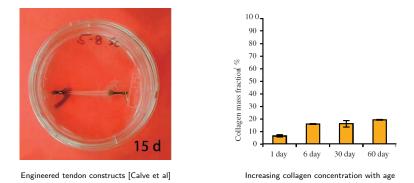
Engineered tendon constructs [Calve et al]



Increasing collagen concentration with age

Motivation and definition

Growth - An addition or loss of mass



Open system with multiple species inter-converting and interacting

Modelling approach

Classical balance laws enhanced via fluxes and sources

ション ふぼう ふぼう ふほう しょうく

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - diffuses relative to the solid phase
- Dissolved solutes (sugars, proteins, ...)
 - undergo transport relative to fluid

Modelling approach

Classical balance laws enhanced via fluxes and sources

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - diffuses relative to the solid phase
- Dissolved solutes (sugars, proteins, ...)
 - undergo transport relative to fluid

Modelling approach

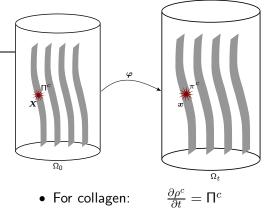
Classical balance laws enhanced via fluxes and sources

- Solid Collagen, proteoglycans, cells
- Extra cellular fluid
 - diffuses relative to the solid phase
- Dissolved solutes (sugars, proteins, ...)
 - undergo transport relative to fluid

Brief subset of related literature:

- Cowin and Hegedus [1976]
- Kuhl and Steinmann [2002]
- Sengers, Oomens and Baaijens [2004]
- Garikipati et al. Journal of the Mechanics and Physics of Solids (52) 1595-1625 [2004]

ション ふぼう ふぼう ふほう しょうく

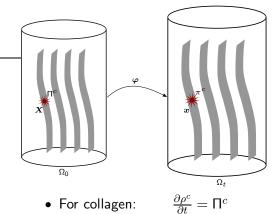


 ρ^c – Collagen concentration Π^c – Collagen production

1

900

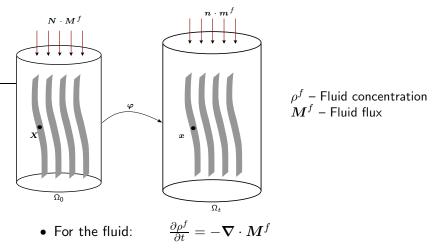
No flux; No boundary condition



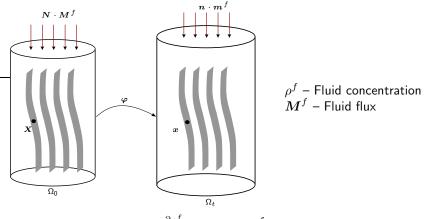
 ρ^c – Collagen concentration Π^c – Collagen production

990

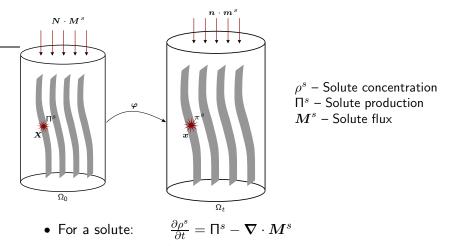
• No flux; No boundary conditions



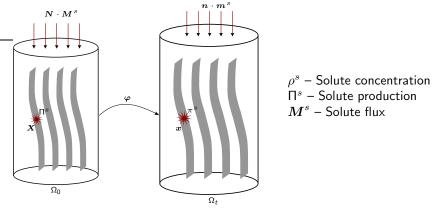
 No source; Concentration or flux boundary conditions – Tissue exposed to fluid in a bath, fluid injected in at the boundary



- For the fluid: $\frac{\partial
 ho^f}{\partial t} = {oldsymbol
 abla} \cdot {oldsymbol M}^f$
- No source; Concentration or flux boundary conditions *Tissue* exposed to fluid in a bath, fluid injected in at the boundary

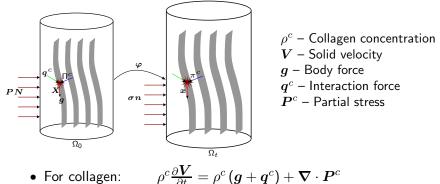


 Flux and source; Concentration boundary condition – Tissue exposed to solute in solution in a bath



- For a solute: $\frac{\partial
 ho^s}{\partial t} = \Pi^s oldsymbol{
 abla} \cdot oldsymbol{M}^s$
- Flux and source; Concentration boundary condition *Tissue* exposed to solute in solution in a bath

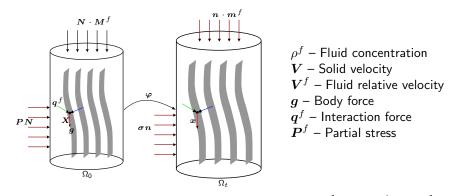
The balance of momentum



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• For collagen:

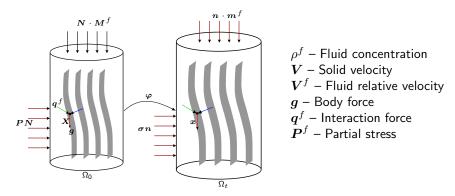
The balance of momentum



- For the fluid, velocity relative to the solid: $m{V}^f=(1/
ho^f)m{F}m{M}^f$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

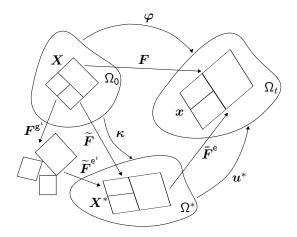
The balance of momentum



• For the fluid, velocity relative to the solid: $V^f = (1/\rho^f) F M^f$ $\rho^f \frac{\partial}{\partial t} (V + V^f) = \rho^f (g + q^f) + \nabla \cdot P^f - (\nabla (V + V^f)) M^f$

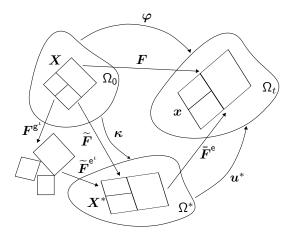
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Growth kinematics



- $F = \overline{F}^{e} \widetilde{F}^{e^{\iota}} F^{g^{\iota}}$
- ullet Internal stress due to $oldsymbol{F}$

Growth kinematics



< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0 >

- $\boldsymbol{F} = \boldsymbol{\bar{F}}^{\mathsf{e}} \boldsymbol{\widetilde{F}}^{\mathsf{e}^{\iota}} \boldsymbol{F}^{\mathsf{g}^{\iota}}$
- Internal stress due to $\widetilde{\pmb{F}}^{\mathsf{e}^{\iota}}$

Constitutive relations for fluxes

- · Combine first and second laws to get dissipation inequality
- Constitutive hypothesis $e^{\iota} = \hat{e}^{\iota}(F^{e^{\iota}}, \rho^{\iota}, \eta^{\iota})$ \Rightarrow consistent constitutive relations
- Fluid flux relative to collagen $M^f = D^f \left(
 ho^f F^T g + F^T \nabla \cdot P^f - \nabla (e^f - \theta \eta^f)
 ight)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\widetilde{V}^s = V^s - V^f$ $\widetilde{M}^s = D^s (-\nabla (e^s - \theta \eta^s))$

ション ふぼう ふぼう ふほう しょうく

 D^f and D^s – Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

Constitutive relations for fluxes

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis $e^{\iota} = \hat{e}^{\iota}(F^{e^{\iota}}, \rho^{\iota}, \eta^{\iota})$ \Rightarrow consistent constitutive relations
- Fluid flux relative to collagen $M^{f} = D^{f} \left(\rho^{f} F^{T} g + F^{T} \nabla \cdot P^{f} - \nabla (e^{f} - \theta \eta^{f}) \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid $\widetilde{V}^s = V^s - V^f$ $\widetilde{M}^s = D^s (-\nabla (e^s - \theta \eta^s))$
- D¹ and D^s Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

Constitutive relations for fluxes

- Combine first and second laws to get dissipation inequality
- Constitutive hypothesis e^ι = ê^ι(F^{e^ι}, ρ^ι, η^ι) ⇒ consistent constitutive relations
- Fluid flux relative to collagen $M^{f} = D^{f} \left(\rho^{f} F^{T} g + F^{T} \nabla \cdot P^{f} - \nabla (e^{f} - \theta \eta^{f}) \right)$
- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 $$\begin{split} \widetilde{\boldsymbol{V}}^s &= \boldsymbol{V}^s - \boldsymbol{V}^f \\ \widetilde{\boldsymbol{M}}^s &= \boldsymbol{D}^s \left(-\boldsymbol{\nabla}(e^s - \theta \eta^s) \right) \end{split}$$

ション ふぼう ふぼう ふほう しょうく

D^f and *D^s* – Positive semi-definite mobility tensors Magnitudes from literature, e.g. Mauck et al. [2003]

Worm-like chain model for collagen

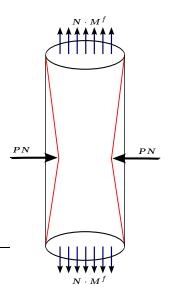
 $\tilde{\rho}^{c} \hat{e}^{c} (\boldsymbol{F}^{e^{c}}, \rho^{c})$

$$\begin{array}{c|c} & & = & \frac{Nk\theta}{4A} \left(\frac{r^2}{2L} + \frac{L}{4(1 - r/L)} - \frac{r}{4} \right) \\ & & = & \frac{Nk\theta}{4\sqrt{2L/A}} \left(\sqrt{\frac{2A}{L}} + \frac{1}{4(1 - \sqrt{2A/L})} - \frac{1}{4} \right) \log(\lambda_1^{a^2} \lambda_2^{b^2} \lambda_3^{c^2}) \\ & & + & \frac{\gamma}{\beta} (J^{e^{\iota} - 2\beta} - 1) + 2\gamma \mathbf{1} \colon \boldsymbol{E}^{e^{\iota}} \end{array}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Embed in multi chain model [Bischoff et al.] $r = \frac{1}{2}\sqrt{a^2\lambda_1^{e^2} + b^2\lambda_2^{e^2} + c^2\lambda_3^{e^2}}$
- λ_{I}^{e} elastic stretches along a, b, c $\lambda_{I}^{e} = \sqrt{N_{I} \cdot C^{e} N_{I}}$

Example of coupled computation



- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow \Rightarrow Guided tendon growth

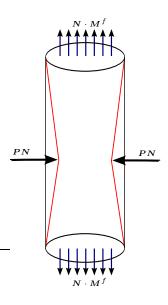
Biphasic mode

- ≈ with the intersection of the two sets the set of the set of the sets $p^{-1} e^{f} = \frac{1}{2} p \left(det(P^{-1}) 1 \right)^{2}$
- Fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]
 - First order rate law: $\Pi^{\rm f} = -k^{\rm f} (\rho^{\rm f} - \rho^{\rm f}_{0_{\rm ini}}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

San

Example of coupled computation

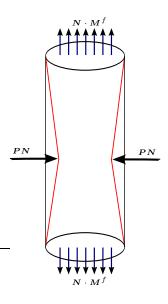


- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow \Rightarrow Guided tendon growth
- Biphasic model
 - worm-like chain model for collagen
 - ideal nearly incompressible fluid $\rho^f \hat{e}^f = \frac{1}{2} \kappa (\det(\boldsymbol{F}^{e^f}) \boldsymbol{1})^2$
- Fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]

First order rate law: $\Pi^{\rm f} = -k^{\rm f} (\rho^{\rm f} - \rho^{\rm f}_{0_{\rm ini}}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$

ション ふぼう ふぼう ふほう しょうく

Example of coupled computation



- Simulating a tendon immersed in a bath
- Constrict it to force fluid and dissolved nutrient flow \Rightarrow Guided tendon growth
- Biphasic model
 - worm-like chain model for collagen
 - ideal nearly incompressible fluid $\rho^f \hat{e}^f = \frac{1}{2} \kappa (\det(\boldsymbol{F}^{e^f}) \boldsymbol{1})^2$
- Fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]
- First order rate law: $\Pi^{\rm f} = -k^{\rm f} (\rho^{\rm f} - \rho^{\rm f}_{\rm 0_{\rm ini}}), \quad \Pi^{\rm c} = -\Pi^{\rm f}$

シック・ 川 ・ 山・ ・ 山・ ・ 山・

Results and inferences

• Total flux in the vertical direction

<□> <=> <=> <=> <=> <=> <=> <=> <</p>

• Stress driven diffusion

Results and inferences

- Regions of high fluid concentration \Rightarrow faster growth
- Relaxation after constriction concludes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system – consistent with mixture theory
- Relevant driving forces arise from thermodynamics

 coupling with mechanics
- Gained insights into the problem
 - Issues of saturation and growth
 - Saturation and Fickian diffusion
 - Configurations and physical boundary conditions
- More careful treatment of biochemistry nature of sources
- Formulated a theoretical framework for remodelling
- Engineering and characterization of growing, functional biological tissue to drive and validate modelling

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system – consistent with mixture theory
- Relevant driving forces arise from thermodynamics

 coupling with mechanics
- Gained insights into the problem
 - Issues of saturation and growth
 - Saturation and Fickian diffusion
 - Configurations and physical boundary conditions
- More careful treatment of biochemistry nature of sources
- Formulated a theoretical framework for remodelling
- Engineering and characterization of growing, functional biological tissue to drive and validate modelling

Summary and further work

- Physiologically relevant continuum formulation describing growth in an open system – consistent with mixture theory
- Relevant driving forces arise from thermodynamics

 coupling with mechanics
- Gained insights into the problem
 - Issues of saturation and growth
 - Saturation and Fickian diffusion
 - Configurations and physical boundary conditions
- More careful treatment of biochemistry nature of sources
- Formulated a theoretical framework for remodelling
- Engineering and characterization of growing, functional biological tissue to drive and validate modelling