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Open system with multiple species inter-converting and interacting



Modelling challenges and approach

Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– undergoes transport relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– undergo transport relative to fluid
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Brief subset of related literature:

◦ Cowin and Hegedus [1976]

◦ Kuhl and Steinmann [2002]

◦ Sengers, Oomens and Baaijens [2004]

◦ Garikipati et al. – Journal of the Mechanics and Physics of Solids (52) 1595-1625 [2004]
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• Solid – No flux; no boundary conditions

• Fluid – No source; concentration or flux boundary conditions

• Solute – Flux and source; concentration boundary condition



Mass balance

X x

ϕ

Ω0
Ωt

N · M ι
n · mι

Πι πι

ρι – Species concentration
Πι – Species production
M ι – Species flux

• For a species: ∂ρι

∂t = Πι − ∇ · M ι

• Solid – No flux; no boundary conditions

• Fluid – No source; concentration or flux boundary conditions

• Solute – Flux and source; concentration boundary condition



Possibilities for the sources

• Simple first order rate law –
Constituents either “solid” or “fluid”

Πf = −kf(ρf − ρf
ini), Πc = −Πf

• Strain Energy Dependencies –
Weighted by relative densities

Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0

Harrigan & Hamilton [1993]

• Enzyme Kinetics – Introducing
additional species to the mixture

Πs = (Πs
maxρs)

(ρs
m+ρs) ρcell, Πc = −Πs

Michaelis Menten [1913]
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Enzyme Kinetics

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P

k1 - Association of substrate and enzyme

k−1 - Dissociation of unaltered substrate

k2 - Formation of product

ρs
m =

(k2+k−1)
k1

Πs
max

Πs
max
2

ρs →ρs
m

Π ↑



∂ρι

∂t = Πι − ∇ · M ι



Constitutive relations for fluxes

• Compatible with dissipation inequality

• Fluid flux relative to collagen
M f = Df

(
ρfF T g + F T ∇ · P f − ∇(ef − θηf )

)
• Solute flux (proteins, sugars, nutrients, . . . ) relative to fluid

Ṽ
s

= V s − V f

M̃
s

= Ds (−∇(es − θηs))
• Df and Ds – Positive semi-definite mobility tensors

Magnitudes from literature, e.g. Mauck et al. [2003]
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Momentum balance
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Constitutive relations for partial stress

Stress-strain response curves of self organized tendon [Arruda et al]

• Hyper-elastic material compatible with dissipation inequality



Worm-like chain model based internal energy density
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• Embed in multi chain model [Bischoff et al.]

r = 1
2

√
a2λe2

1 + b2λe2
2 + c2λe2

3

• λe
I – elastic stretches along a, b, c
λe

I =
√

N I · CeN I



Growth kinematics
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Example of coupled computation

• Simulating a tendon immersed in a
nutrient rich bath

• Biphasic model
• worm-like chain model for collagen
• ideal nearly incompressible fluid

ρf êf = 1
2κ(det(F ef

) − 1)2

• Fluid mobility Df
ij = 1 × 10−8δij ,

Han et al. [2000]

• First order rate law:
Πf = −kf(ρf − ρf

ini), Πc = −Πf
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ρf êf = 1
2κ(det(F ef

) − 1)2

• Fluid mobility Df
ij = 1 × 10−8δij ,

Han et al. [2000]

• First order rate law:
Πf = −kf(ρf − ρf

ini), Πc = −Πf



Results and inferences

Collagen concentration evolution
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Collagen concentration evolution
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

Before Growth
After Growth

Stress vs Extension curves



Summary and further work

• Physiologically relevant continuum formulation describing
growth in an open system – consistent with mixture theory

• Relevant driving forces arise from thermodynamics
– coupling with mechanics

• Gained insights into the problem
• Issues of saturation and growth
• Saturation and Fickian diffusion
• Configurations and physical boundary conditions

• More careful treatment of biochemistry – nature of sources

• Formulated a theoretical framework for remodelling

• Engineering and characterization of growing, functional
biological tissue to drive and validate modelling
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